期刊文献+

处处连续处处不可微多元函数集合的性质

Properties on the set of continuous nowhere differentiable functions with several variables
下载PDF
导出
摘要 证明了C([0,1]n)中处处不可微函数集合的补集是第一纲集.证明思路沿用n=1时的情形,但通过构造一系列疏集,使证明中不等式的得出更为自然.通过对证明的详细分析,可以得到向量值连续函数空间也有类似的性质.最后讨论了协变导数代替偏导数的情形. It is proved that the complement of the set of nowhere differentiable functions in C(n) is a first category set by the similar way in the case of n=1.The author improves the definition of the constructed nowhere dense sets so that one of useful inequalities is naturally inferred out.By analysis of the original proof,it is found that the space of vector valued continuous functions has similar properties.And the result for the covariant derivative of Rn is also generalized.
作者 谈强 徐海峰
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期4-6,共3页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11071208 11101352 11126046)
关键词 多元函数 奇点稠密原理 有界线性算子 第一纲集 协变微分 multi-function singularity dense theory bounded linear operator first category set covariant derivative
  • 相关文献

参考文献8

  • 1张恭庆,林源渠.泛函分析讲义[M].北京:北京大学出版社,2006:88-92.
  • 2OKAMOTO H. A remark on continuous, nowhere differentiable functions [J]. Proc Japan Acad Ser A Math Sci, 2005, 81(3): 47-50.
  • 3KRUPPEL M. On the extrema and the improper derivatives of Takagi's continuous nowhere differentiable function [J]. Rostock Math Kolloq, 2007, 62:41-59.
  • 4KRUPPEL M. Takagi's continuous nowhere differentiable function and binary digital sums [J]. Rostock Math Kolloq, 2008, 63: 37-54.
  • 5ALLAART P C, KAWAMURA K. The improper infinite derivatives of Takagi's nowhere-differentiable function [J]. j Math Anal Appl, 2010, 372(2) : 656-665.
  • 6ALLAART P C, KAWAMURA K. Extreme values of some continuous nowhere differentiable fuiactions [J]. Math Proc Cambridge Philos Soe, 2006,140(2): 269-295.
  • 7KAIRIES H H. On a Banach space automorphism and its connections to functional equations and continuous nowhere differentiable functions [J]. Ann Acad Paed Cracoviensis Stud Math, 2001, 1: 39-48.
  • 8PETERSEN P. Riemannian geometry [M]. 2nd ed. New York.. Springer, 2006: 22-27.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部