期刊文献+

基于E^2LSH的特定人物快速检索方法

E^2LSH-based Fast Specific Person Retrieval
下载PDF
导出
摘要 特定人物检索对视频监管和视频搜索具有重要意义。使用PCA-SIFT(Principal Compo-nents Analysis-Scale Invariant Feature Transform)表征图像内容,并引入E2LSH(Exact EuclideanLocality-Sensitive Hashing)来构建索引文件,提出了一种基于E2LSH的特定人物快速检索方法。新方法首先对特征进行降维映射,并根据位置敏感哈希函数的运算结果构建索引文件,然后再用点点对称OOS(One-to-One Symmetric)的匹配策略查询最近邻点,实现特定人物的快速检索。实验结果表明,与传统方法相比新方法不但提高了人物检索精度,而且检索时间也大大减少,同时,对大规模数据库有较好的适应性。 The specific person retrieval is very important to video supervision and search.In this paper,images are characterized using PCA-SIFT(Principal Components Analysis-Scale Invariant Feature Transform) and E2LSH(Exact Euclidean Locality-Sensitive Hashing) is introduced to construct index,and hence a fast specific person retrieval method based on E2LSH is proposed.Firstly,features are mapped to low dimensional space,index files are constructed according to the result of LSH,and then,the nearest neighbors are searched using OOS(One-to-One Symmetric) matching to achieve fast specific person retrieval.Experimental results show that compared to traditional methods,this novel method can increase retrieval accuracy,decrease retrieval time significantly and adapt to large scale datasets with satisfactory performance.
出处 《信息工程大学学报》 2011年第6期703-707,723,共6页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(60872142)
关键词 特定人物检索 PCA-SIFT E2LSH 点点对称 specific person retrieval PCA-SIFT E2LSH OOS
  • 相关文献

参考文献11

  • 1Yi Yihu, Qu Daokui. Face detection method based on skin color segmentation and facial component localization[ C ]// IEEE International Asia Conference on Informatics in Control, Automation and Robotics. 2010:64-68.
  • 2Chen Mingyu, Alexander Hauptmann. Searching for a specific person in broadcast news video[ C]// ICASSP. 2004-1036- 1039.
  • 3Xavier Naturel, Patrick Gros. A fast shot matching strategy for detecting duplicate sequence in a television stream [ C ]// CVDB. 2005:538-544.
  • 4Lowe D. Distinctive image features from scale-invariant keypoints [ J]. International Journal on Computer Vision, 2004, 60 (2) :91-110.
  • 5Ke Y, Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. 2004, 21 (2) :506-513.
  • 6Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 ( 10 ) : 1615-1630.
  • 7Wang Zhuozheng, Mei Yalei, Yan Fang. A New Web Image Searching Engine by Using SIFT Algorithm[ C]//IEEE International Conference on Web Information Systems and Mining. 2009: 366-370.
  • 8Arya S, Mount D. ANN Searching Toolkit [ EB/OL]. [ 2011-2-23 ]. ftp ://ftp. cs. umd. edu/pub/faculty/mount/ANN/.
  • 9Datar M, Indyk P, Immorlica N, et al. Locality-Sensitive Hashing Scheme Based on p-Stable Distributions[ C]//Proceedings of the Twentieth AnnualSymposium on Computational Geometry. 2004 : 253-262.
  • 10Malcolm Slaney, Michael Casey. Locality-Sensitive Hashing for Finding Nearest Neighbors[ J]. IEEE Signal Processing Magzine, 2008,8(3) :128-131.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部