期刊文献+

一类具有时滞和免疫反应的病毒感染模型的稳定性和Hopf分支 被引量:5

Stability and Hopf Bifurcation of a Virus Infection Model with Time Delay and Immune Response
下载PDF
导出
摘要 研究一类具有时滞和免疫反应的病毒感染动力学模型.通过分析特征方程,讨论了系统各个平衡点的局部稳定性,得到了系统Hopf分支存在的充分条件.通过构造适当的Lyapunov泛函证明了未感染平衡点和无免疫病毒感染平衡点的全局稳定性. A virus infection model with time delay and immune response is studied.By analyzing the corresponding characteristic equation,the local stability of each of feasible equilibria of the model is investigated.The existence sufficient condition of Hopf bifurcations is established.By constructing appropriate Lyapunov functional,the global stability of the infection-free equilibrium and the immune-free infection equilibrium are proved.
作者 田晓红 徐瑞
出处 《北华大学学报(自然科学版)》 CAS 2011年第4期373-378,共6页 Journal of Beihua University(Natural Science)
基金 国家自然科学基金项目(10671209,11071254) 军械工程学院科学研究基金资助项目(JCB1005)
关键词 时滞 免疫反应 饱和发生率 稳定性 HOPF分支 time delay immune response saturation incidence stability Hopf bifurcation
  • 相关文献

参考文献6

  • 1Pang H, Wang W, Wang K. Global Properties of Virus Dynamics with CTL Immune Response [ J ]. Journal of Southwest China Normal University ( Natural Science), 2005,30 ( 5 ) : 796-799.
  • 2Murase A, Sasaki T, Kajiwara T. Stability Analysis of Pathogen-immune Interaction Dynamics [ J ]. J Math Biol,2005,51:247-267.
  • 3Qizhi Xie, Dongwei Huang, Shuangde Zhang,et al. Analysis of a Viral Infection Model with Delayed Immune Response [ J ]. Applied Mathematical Modelling,2010,34(10) :2388-2395.
  • 4Perelson A S, Nelson P W. Mathematical Analysis of HIV-1 Dynamics in Vivo [ J ]. SIAM Review, 1999,41 ( 1 ) :3-44.
  • 5杨茂,王开发.一类非线性感染率病毒动力学模型分析[J].四川师范大学学报(自然科学版),2009,32(3):304-306. 被引量:18
  • 6Song Y, Yuan S. Bifurcation Analysis in a Predator-prey System with Time Delay [ J ]. Nonlinear Anal,2006,7:265-284.

二级参考文献16

  • 1黄玉梅,李树勇,潘杰.具有阶段结构的SIRS传染病模型[J].四川师范大学学报(自然科学版),2005,28(1):31-33. 被引量:10
  • 2唐国宁.KGW模型、流行病模型的重正化群方法研究[J].广西师范大学学报(自然科学版),1995,13(3):39-43. 被引量:2
  • 3郭淑利,江晓武.由两种不同病毒导致的SIR流行病模型分析[J].郑州大学学报(理学版),2006,38(2):5-8. 被引量:4
  • 4王开发,邓国宏,樊爱军.宿主体内病毒感染的群体动力学研究[C]//陆征一,周义仓.数学生物学进展.北京:科学出版社,2006:58-73.
  • 5Wang Kai-fa, Wang Wen-di. Propagation of HBV with spatial dependence [J]. Math Biosci ,2007,210:78-95.
  • 6Ebert D, Zsehokke-Rohringer C D, Carius H J. Dose eftecls and density-dependent regulation of two mieroparasites of Daphniamagma[J].Oeeologia ,2000,122:200-209.
  • 7McLean A R, Bostock C J. Scrapie infections initiated at valying doses:an analysis of 117 titration experiments[ J]. Phil Trans R Soc Lond B,2000,355:1043-1050.
  • 8Spouge J L, Shrager R I, Dimitrov D S. HIV-1 infection kinetics in tissue cultures[ J ]. Math Biosci, 1996,138 : 1-22.
  • 9Bonhoeffer S, Coffin J M, Nowak M A. Human immunodeficiency virus drug therapy and virus load[J].J Virology, 1997,71: 3275-3278.
  • 10Bartholdy C, Christensen J P, Wodarz D,et al. Persistent virus infection despite chronic eytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infected witil lymphocytic chrofiomeningitis virus[J]. J Virology ,2000,74:10304-10311.

共引文献17

同被引文献25

  • 1庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 2A S Perelson,P W Nelson. Mathematical Analysis of HIV-1 Dynamics in Vivo[ J ]. SIAM Review, 1999,41 (1) :3-44.
  • 3D S Callaway, A S Perelson. HIV-1 Infection and Low Steady State Viral loads [ J ]. Bulletin of Mathematical Biology, 2002, 64:29-64.
  • 4Martin A. Nowak,Sebastian Bonhoeffer,George M. Shaw,Robert M. May.Anti-viral Drug Treatment: Dynamics of Resistance in Free Virus and Infected Cell Populations[J]. Journal of Theoretical Biology . 1997 (2)
  • 5Nowak M A, Bangham CRM. Population dynamics of immune responses to persistentvirusces[J]. Science, 1996, 272:74-79.
  • 6Nowak M A, Bonhoffer S, Shaw G M, May R M. Anti-viral drug treatment: dynamics ofresisance in free virus and infected cell populations [J], Journal of Theoretical Biology, 1997,184:203-217.
  • 7Andrei Korobeinikov. Global properties of basic virus dynamics models [J]. Bulletin of Math-ematical Biology, 2004, 66: 879-883.
  • 8Perelson A S, Nelson P W. Mathematical analysis of HIV-1 dynamics in vivo[J]. SIAMReview, 1999, 41(1):3-44.
  • 9Callaway D S, Perelson A S. HIV-1 infection and low steady state viral loads [J]. Bulletin ofMathematical Biology, 2002, 64:29-64.
  • 10杨茂,王开发.一类非线性感染率病毒动力学模型分析[J].四川师范大学学报(自然科学版),2009,32(3):304-306. 被引量:18

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部