期刊文献+

α-双对角占优矩阵的等价表征及应用 被引量:3

Equivalent Representation of α-Double Diagonally Dominant Matrices and Its Application
下载PDF
导出
摘要 依据对角占优矩阵理论和α-对角占优矩阵之间的关系,给出严格α1-双对角占优矩阵的等价表征,由此得到一个非奇异H-矩阵的判定准则,并给出判定非奇异H-矩阵的算法及程序,最后通过数值结果说明了判定方法的有效性. According to the relations of the theory of diagonally dominant matrices and diagonally dominant matrices,an equivalent representation for strictly α1-double diagonally dominant matrices is given.By using the equivalent condition,a criterion for nonsingular H-matrices is obtained.At the same time,an algorithm and corresponding program for distinguishing nonsingular H-matrices is given.In the end,several numerical examples are carried out to show the efficiency of the proposed criteria.
出处 《北华大学学报(自然科学版)》 CAS 2011年第4期396-401,共6页 Journal of Beihua University(Natural Science)
基金 吉林省教育厅科学技术研究项目(2009-152) 北华大学大学生创新性实验计划项目
关键词 对角占优矩阵 Α-双对角占优矩阵 非奇异H-矩阵 diagonally dominant matrices α-double diagonally dominant matrices H-nonsingular matrices
  • 相关文献

参考文献10

二级参考文献28

共引文献197

同被引文献30

  • 1黄廷祝.非奇H矩阵的简捷判据[J].计算数学,1993,15(3):318-328. 被引量:198
  • 2吕洪斌.矩阵的弱α-连对角占优性及应用[J].东北师大学报(自然科学版),2005,37(2):10-14. 被引量:12
  • 3A. Berman, R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences [ M ]. New York: Society for Industrial and Applied Mathematics, 1994.
  • 4R. A. Horn, C. R. Johnson. Matrix Analysis [ M ]. Cambridge:Cambridge University Press, 1985.
  • 5R. S. Varga. Gersgorin and His Circles [ M ]. Berlin :Springer-Verlag,2004.
  • 6R. A. Brualdi. Matrices, eigenvalues, and directed graphs [ J ]. Linear and Muhilinear Algebra, 1982,11 : 143-165.
  • 7Ljiljana Cvetkovic. H-matrix theory vs. eigenvalue localization[J]. Numer Algor,2006,42:229-245.
  • 8A. Berman, R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences [ M ]. New York : Society for Industrial and Applied Mathematics, 1994.
  • 9R. A. Horn, C. R. Johnson. Matrix Analysis [ M ]. Cambridge : Cambridge University Press, 1985.
  • 10R. S. Varga. Gersgorin and His Circles. Berlin:Springer-Verlag,2004.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部