摘要
利用Singer正交的相关结论,证明了一个维数不小于3的赋范线性空间X是一个内积空间当且仅当X的单位球面上的任一点均存在一个过原点的超平面H使得X毕达哥拉斯正交于H.
By using the related results of Singer orthogonality,it is proved that a normed linear space X with dimension not less than three is an inner product space if and only if for each vector X in the unit sphere,there exists a hyperplane H passing through the origin such that X is Pythagorean orthogonal to H.
出处
《北华大学学报(自然科学版)》
CAS
2011年第4期406-407,共2页
Journal of Beihua University(Natural Science)
关键词
毕达哥拉斯正交
Singer正交
内积空间
特征性质
Pythagorean orthogonality
Singer orthogonality
inner product spaces
Characterizations