期刊文献+

基于三方博弈的短途班轮航线优化模型 被引量:8

Optimization model of short-distance liner ship route based on tripartite game
原文传递
导出
摘要 考虑政府补贴、碳排放控制以及货主运输方式选择,提出基于航线运营者、货主和政府三方博弈关系的短途班轮航线优化模型。应用用户平衡原理,模型可优化航线配船与航线结构设计,计算恰当的政府补贴额。开发了基于时空网络拓展和Frank-Wolf算法的遗传算法求解模型,并对渤海西部短途航线进行了优化。研究结果表明:在政府补贴为1 121.28元.d-1时,运营者若采用9艘40 000t级滚装船在渤海西部区域各主要港口间布设单摆式航线,每船可获得704 567.12元.d-1的收益,碳排放强度下降约17.78%;若期望碳排放强度下降20%以上,运营者应采用8艘40 000t级滚装船做环绕航行,可为运营者带来956 264.83元.d-1的收益,使碳排放强度下降约27.23%,但需要政府提供56 075.26元.d-1的高额补助。计算结果符合预期,优化模型有效。 Government subsidy, carbon emission control, shippers' choices of transport modes were considered, the optimization model of short-distance liner ship route was developed based on tripartite game relations among carriers, shippers and government. The model could not only optimize the fleet deployment and structure design of ship route simultaneously, but also work out the reasonable amount of government subsidy by using user equilibrium principle. A genetic algorithm based on time-space network expansion and Frank-Wolf algorithm was developed to solve the model, and short-distance liner ship routes in the western area of Bohai Bay were optimized. Analysis result shows that when pendulum-pattern route among major ports in the western area of Bohai Bay is deployed with 9 ro-ro ships of 40 000 t, and government subsidy is 1 121.28 yuan · d^-1 , the total benefit of per ship is 704 567.12 yuan· d^-1, carbon emission reduces by about 17.78%. When carbon emission is expected to decrease by more than 20%, circle-pattern route is deployed with 8 ro-ro ships of 40 000 t, the route can bring total benefit of 956 264.83 yuan · d^-1 for carriers, reduce carbon emission by about 27.23%, but government subsidy reaches up to 56 075.26 yuan· d^-1. The calculating result accords with the expectation result, so the optimization model is effective. 2 tabs, 14 figs, 16 refs.
作者 陈康 杨忠振
出处 《交通运输工程学报》 EI CSCD 北大核心 2011年第6期74-81,88,共9页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(51078049) 高等学校博士学科点专项科研基金项目(20112125110003)
关键词 班轮航线 三方博弈 政府补贴 低碳运输 遗传算法 时空网络拓展 用户平衡 liner ship route tripartite game government subsidy low-carbon transportation genetic algorithm time-space network expansion user equilibrium
  • 相关文献

参考文献16

  • 1RONEN D. Cargo ships routing and scheduling: survey of models and problems[J]. European Journal of Operational Research, 1983, 12(2):119-126.
  • 2RONEN D. Ship scheduling.the last decade[J]. European Journal of Operational Research, 1993, 71(3) :325-333.
  • 3CHRISTIANSEN M, FAGERHOLT K, RONEN D. Ship routing and scheduling: status and perspectives[J]. Trans portation Science, 2004, 38(1): 1-18.
  • 4SHINTANI K, IMAI A, N1SHIMURA E, et al. The container shipping network design problem with empty container repositioning[J]. Transportation Research Part E.. Logistics and Transportation Review, 2007, 43(1).. 39-59.
  • 5RICHA A, OZLEM E. Ship scheduling and network design for cargo routing in liner shipping [J]. Transportation Science, 2008, 42(2): 175-196.
  • 6HANE C A, BARNHART C, JOHNSON E L, et al. The fleet assignment problem: solving a large-scale integer program[J]. Mathematical Programming, 1995, 70 (1/2/3) : 211-232.
  • 7HSU C I, HSIEH Y P. Routing, ship size, and sailing frequency decision-making for a maritime hub and-spoke container network[J]. Mathematical and Computer Modelling, 2007, 45(7/8): 899-916.
  • 8CHEN Chao, ZENG Qing-cheng. Design container shipping network under changing demand and freight rates[J]. Transport, 2010, 25(1): 46-57.
  • 9RANA K, VICKSON R G. A model and solution algorithm for optimal routing of a time-chartered containership [J]. Transportation Science, 1989, 22(2): 83-95.
  • 10寿涌毅,赖昌涛,吕如福.班轮船舶调度多目标优化模型与蚁群算法[J].交通运输工程学报,2011,11(4):84-88. 被引量:16

二级参考文献20

  • 1李志威,张旭梅.基于动态扫描和蚂蚁算法的物流配送网络优化研究[J].管理工程学报,2006,20(4):9-12. 被引量:10
  • 2CHRISTIANSEN M, FAGERHOLT K, RONEN D. Ship routing and scheduling: status and perspectives[J]. Transportation Science, 2004, 38(1): 1-18.
  • 3DANIEL A. Routing andscheduling with time windows: models and algorithms for tramp sea cargos and rail car blocks[D]. Atlanta: Georgia Institute of Technology, 2006.
  • 4TINGS C, TZENG G H. Ship scheduling and cost analysis for route planning in liner ahipping[J]. Maritime Economics and Logistics, 2008, 5(4): 378-392.
  • 5A.GARWAL R, ERGUN O. Skip scheduling artd network design for cargo routing in liner shipping [J]. Transportation Science, 2008, 42(2) : 175-196.
  • 6YAN Shang-yao, CHEN C Y, LIN S C. Ship scheduling and container shipment planning for liners in short-term operations[J]. Journal of Marine Science and Technology, 2009, 14(4) : 417-435.
  • 7DORIGO M, DI CARO G, GAMBARDELLA L M. Ant algorithms for discrete optimization[J]. Artificial Life, 1999, 5(2): 137-172.
  • 8CHIRA C, PINTEA C M, DUMITRESCU D. An agent- based approach to combinatorial optimization[J]. International Journal of Computers, Communications and Control, 2008, 3(S): 212-217.
  • 9DORIGO M, BLUM C. Ant colony optimization theory: a survey[J]. Theoretical Computer Science, 2005, 344 (2/3) : 243-278.
  • 10KOLISCH R, DREXL A. Local search for nonpreemptive multi-mode resource-constrained project scheduling[J]. IIE Transactions, 1997, 29(11): 987-999.

共引文献45

同被引文献107

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部