期刊文献+

均值-CVaR投资组合模型的改进及实证研究 被引量:2

An Empirical Study on the Improvement of Mean-CVaR Portfolion Model
下载PDF
导出
摘要 投资组合理论是现代经济分析的基础.本文在已有的均值-CVaR投资组合模型的基础上,考虑到投资组合理论的目标是既定风险下收益率的最大化,从预测股票价格和收益率的角度进行投资组合模型的改进,得到使预测收益率最大化的预测值-CVaR模型.随后通过实证分析,考察预测值-CVaR模型相对于均值-CVaR模型的效果. Portfolio Theory is the foundation of modem economic analysis. Considering the goal of the theory is to maximize the profit under intended risk, this paper aims to the improvement of the portfolio model from the perspective of stock price pvediction and its return rate based on the existing Mean-CVaR Porlfolic Model, the ideal Predicted value-CVaR is obtained. The working effects of the two models are compared.
作者 董南
出处 《邵阳学院学报(自然科学版)》 2011年第4期9-12,共4页 Journal of Shaoyang University:Natural Science Edition
关键词 投资组合模型 CVAR 核平滑估计 Portfolio model CVaR kernel smoothing estimation
  • 相关文献

参考文献11

  • 1Markowitz H M. Portfolio selection [J]. Journal of Finance, 1952, 7(1): 77-91.
  • 2Markowitz H M. Portfolio Selection: Efficient Diversification. of Invesmaents[M]. New York: Wiley, 1959.
  • 3Konno H., Yamazaki H. Mean Absolute Deviation Portfolio Optimization Model and its Application to Tokyo Stock Market[J]. Management Science. 1991,(37): 519-531.
  • 4徐绪松,杨小青,陈彦斌.半绝对离差证券组合投资模型[J].武汉大学学报(理学版),2002,48(3):297-300. 被引量:37
  • 5Jorion P. Risk2: Measuring the risk in value at risk [J]. Financial Analysts Journal, 1996, 52(6): 47-56.
  • 6Rockafeller T, Uryasev S. Optimization of Conditional VaR[J]. Journal of Risk, 2000, 2(3): 21-24.
  • 7Jonas E, Uryasev S, Krokhmal P. Portfolio optimization with conditional value-at-risk objective and constraints [R]. 1999.12(20).
  • 8田新民,黄海平.基于条件VaR(CVaR)的投资组合优化模型及比较研究[J].数学的实践与认识,2004,34(7):39-49. 被引量:18
  • 9欧阳红兵 王小卒.图形技术交易规则的预测能力和盈利能力.中国金融学,2004,(2):129-153.
  • 10连仁源,许若宁.基于交易费用和绝对偏差的证券投资组合模型[J].邵阳学院学报(自然科学版),2010,7(2):18-21. 被引量:3

二级参考文献16

  • 1夏江山,荣喜民.具有交易成本的组合投资有效边界的研究[J].天津轻工业学院学报,2003,18(B12):37-39. 被引量:5
  • 2Artzner P. Delbaen F, Elber J M, Heath D. Coherent Measures of Risk[M]. Mathematical Finance, 1999. 9.
  • 3Basak S, Shapiro A. Value-at-Risk-Based risk management: Optimal policies and asset prices[J]. The Review of Financial Studies Summer, 2001, 14 (2).
  • 4Campbell R, Huisman R, Koedijk K. Optimal portfolio selection in a Value-at-Risk framework[J]. Journal of Banking & Finance, 2001, 25.
  • 5Frederik Johansson. Michael J Seiler, Mikael Tjarnberg. Measuring Downside Portfolio Risk Journal of Portfolio Management[M]. Fall 1999 v26.
  • 6Gaivoronski Alexei, Pflug Georg. Properties and Computation of Value at Risk Efficient Portfolios Based on Historical Data[M], 2002.
  • 7Rockafellar R T, Uryasev S. Optimization of conditional Value-at-Risk[J]. Journal of Risk, 2000, 2.
  • 8菲力普·乔瑞著 张海渔 译.VaR:风险价值--金融风险管理新标准[M].北京:中信出版社,2000..
  • 9哈利.M.马科维兹著,朱菁,欧阳向军译.资产组合选择和资本市场的均值-方差分析[M].上海:上海人民出版社,2006.
  • 10Konno H and Yamazaki H. Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market [J]. Management Science, 1991,37:519-529.

共引文献57

同被引文献15

  • 1徐绪松,王频,侯成琪.基于不同风险度量的投资组合模型的实证比较[J].武汉大学学报(理学版),2004,50(3):311-314. 被引量:9
  • 2张建涛,张宏亮.证券组合中Markowitz模型及其对比研究[J].沿海企业与科技,2005(5):101-102. 被引量:2
  • 3Markowitz HM.Portfolio selectionThe Journal of Finance,1952.
  • 4Markowitz H. Portfolio selection[J].Journal of Finance,1952,(07):77-91.
  • 5Morgon N,StephenJ. Wright. Numerical Optimization[M].1993.
  • 6Artzner P,Delbaen F,Eber J M,Heath D. Thinking Coherently[J].Risk(Concord,Nh),1997,(11):68-71.
  • 7Artzner P,Delbaen F,Eber J M,Heath D. Coherent Measures of Risk[J].Matbematical Finance,1999,(03):203-228.
  • 8Rockafellar R T,Uryasev S. Conditional Value-at-riskfor general loss distributions[J].Journa/ of Banking and Finance,2002,(07):1443-1471.
  • 9Rockafellar T R,Uryasev S P. Optinfization of Conditional Value-at-Risk[J].Journal of Risk,.
  • 10Lobo M S,Boyd S. The worst-case risk of a portfolio[J].Journal of Economic Dynamics and Control,2000,(03):1159-1193.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部