摘要
针对标准差分进化算法易早熟的缺点,模拟人类社会民族融合的进化历程,提出了动态种群差分进化算法(DPDE)。算法中将种群分为多个独立的子种群,子种群之间采用相互移民来进行信息交换,设置种群分裂和融合的条件来动态控制子种群个数。通过数值实验用几种典型的测试函数对DPDE的搜索性能进行了测试,实验结果表明,该算法能有效地避免早熟,具有良好的全局收敛性。
Since the standard differential evolution is easy to fall into premature convergence, the paper presented a Dynamic Population Differential Evolution Algorithm (DPDE) which was based on simulating the evolution developing history of human races. The population was divided into several subpopulations in DPDE, and the numbers of subpopulations was dynamically controlled by merging and dividing, which could enhance the searching capacity of the algorithm. Finally, three experiments were made on benchmark functions. The results show that DPDE has a good global searching capacity than DE and can avoid premature convergence.
出处
《苏州科技学院学报(工程技术版)》
CAS
2011年第3期68-72,共5页
Journal of Suzhou University of Science and Technology (Engineering and Technology)
基金
河南省教育厅自然科学研究计划(2009A110006)
新乡市科技发展计划项目(08G058)
关键词
动态群体
优化
差分进化算法
dynamic population
optimization
differential evolution algorithm