期刊文献+

动态种群差分进化算法研究 被引量:1

Research on Dynamic Population Differential Evolution Algorithm
下载PDF
导出
摘要 针对标准差分进化算法易早熟的缺点,模拟人类社会民族融合的进化历程,提出了动态种群差分进化算法(DPDE)。算法中将种群分为多个独立的子种群,子种群之间采用相互移民来进行信息交换,设置种群分裂和融合的条件来动态控制子种群个数。通过数值实验用几种典型的测试函数对DPDE的搜索性能进行了测试,实验结果表明,该算法能有效地避免早熟,具有良好的全局收敛性。 Since the standard differential evolution is easy to fall into premature convergence, the paper presented a Dynamic Population Differential Evolution Algorithm (DPDE) which was based on simulating the evolution developing history of human races. The population was divided into several subpopulations in DPDE, and the numbers of subpopulations was dynamically controlled by merging and dividing, which could enhance the searching capacity of the algorithm. Finally, three experiments were made on benchmark functions. The results show that DPDE has a good global searching capacity than DE and can avoid premature convergence.
出处 《苏州科技学院学报(工程技术版)》 CAS 2011年第3期68-72,共5页 Journal of Suzhou University of Science and Technology (Engineering and Technology)
基金 河南省教育厅自然科学研究计划(2009A110006) 新乡市科技发展计划项目(08G058)
关键词 动态群体 优化 差分进化算法 dynamic population optimization differential evolution algorithm
  • 相关文献

参考文献11

  • 1Storn R,Price K. Differential evolution--A simple and efficient adaptive scheme for global optimization over continuous spaces[R]. Berkeley: University of California, 2006.
  • 2STORN R,PRICE K. Differential Evolution- a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces l J] Technical Report, International Computer Sciencelnstitute, 1995 (8) : 22-25.
  • 3Feoktistov V,Janaqi S. Generalization of the strategies in differential evolution[C]//Proc of the 18th Int Parallel and Distributed Preeessing Symposium. Santa Fe, 2004 : 165-170.
  • 4Kaelo P,Ali M M. A numerical study of some modified differential evolution algorithms[J]. European J of Operational Research ,2006,169 (3): 1176-1184.
  • 5张吴明,钟约先.基于改进差分进化算法的相机标定研究[J].光学技术,2004,30(6):720-723. 被引量:18
  • 6Chang Y P, Wu C J. Optimal muhi objective planning Simple feasibility rules and differential evolution for of large2scale passive hmanonic filters using hybrid constrained optimization[C]//Lecture Notes in differential evolution method considering parameter and Computer Science. Berlin: Springer, 2004: 707-716.
  • 7Onwubolu G, Davendra D. Scheduling flow shops using differential evolution algorithm[J]. European J of Operational Research, 2006,171 (2) :674- 692.
  • 8Bergey P K, Ragsdale C. Modified differential evolution A greedy random strategy for genetic recombination[J]. Omega, 2005,33 (3) :255-265.
  • 9Teo J. Differential evolution with self-adaptive populations[C]//Lecture Notes in Artificial Intelligence. Berlin:Springer,2005:1284-1290.
  • 10刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291

二级参考文献90

共引文献326

同被引文献13

  • 1李成法,陈贵海,叶懋,吴杰.一种基于非均匀分簇的无线传感器网络路由协议[J].计算机学报,2007,30(1):27-36. 被引量:373
  • 2沈波,张世永,钟亦平.无线传感器网络分簇路由协议[J].软件学报,2006,17(7):1588-1600.
  • 3Akyildiz L F,Su Welilian,Sankarasubramaniam Y,et al.A survey on sensor networks[J].IEEE Communications,2002,40(8):102-114.
  • 4Shih E,Cho S H,Ickes N,et al.Physical layer driven protocoland algorithm design for energy-efficient wirelesssensor networks[C]//Proceedings of the 7th Annual InternationalConference on Mobile Computing and Networking,2001:272-287.
  • 5Singh S,Woo M,Raghavendra C S.Power-aware routingin mobile ad hoc networks[C]//Proceedings of the 4th AnnualACM/IEEE International Conference on Mobile Computingand Networking,1998:181-190.
  • 6Heinzelman W,Chandrakasan A,Balakrishnan H.Energyefficientcommunication protocol for wireless sensor networks[C]//Proceedings of the 33rd Hawaii InternationalConference on System Sciences.Hawaii,USA:[s.n.],2000.
  • 7Li C,Ye M,Chen G,et al.An energy-efficient unequalclustering mechanism for wireless sensor networks[C]//IEEE International Conference on Mobile Adhoc and SensorSystems Conference,2005.
  • 8乔俊峰,刘三阳,曹祥宇.无线传感器网络中基于节点密度的簇算法[J].计算机科学,2009,36(12):46-49. 被引量:28
  • 9王林,赵绍英.无线传感器网络LEACH路由协议的研究与改进[J].计算机工程与应用,2012,48(2):80-82. 被引量:22
  • 10何宏魁,李安军,万春环,汤有宏,周庆伍.物联网技术在白酒行业应用综述[J].酿酒科技,2012(2):91-92. 被引量:22

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部