摘要
系统研究了广域多项式算法和有限元算法在扰动引力快速赋值计算中的效能问题。首先分析了算法的基本原理和赋值计算过程,利用改进的扰动引力计算方法构建了准确的扰动场;然后对模拟航迹进行赋值实验,定量分析了赋值精度与运算速度。结果表明:在相同实验条件下,广域多项式方法更有优势;当空间单元为10′×10′×20km(Δφ×Δλ×Δρ)时,其赋值精度可优于2×10-5 m.s-2,计算速度优于0.25ms。在实验中,由于采用较为完备的扰动引力计算方法和较为准确的基础数据,所构建的扰动引力场更加符合地球重力场的实际情况;同时选择了较长的飞行轨迹,因而,得到结果更加准确、可靠。
The efficiency of finite element method and generalized extension method applied in computing the trajectory disturbing gravity were studied.The principles of the two methods were analyzed,and the disturbing gravity field was constructed with accurate gravity data and calculating method.Experiments was made to analyze the efficiency of two approximating methods mentioned above;and useful information about the computing accuracy and speed was obtained.The results showed that generalized extension method had an advantage of efficiency.With the airspace 10′×10′×20 km(Δφ×Δλ×Δρ),its computing accuracy was better than 2×10-5m·s^-2,and computing speed was less than 0.25 ms.In the experiments,more accurate gravity data and more reasonable calculation have been applied in computing the disturbing gravity field to obtain more credible results.
出处
《测绘科学技术学报》
北大核心
2011年第6期411-415,共5页
Journal of Geomatics Science and Technology
基金
国家自然科学基金资助项目(41174026
41104047)
关键词
扰动引力
快速赋值方法
有限元方法
广域多项式方法
赋值效能
disturbing gravity
fast computing method
finite element
generalized extension
computing efficiency