期刊文献+

基于模糊逻辑的多代理推荐系统 被引量:1

Multi-agent recommendation system based on fuzzy logic
下载PDF
导出
摘要 为模拟人的思维,向用户推荐高质量、个性化的电视节目,在TV-Anytime环境下提出一个基于模糊逻辑的多代理推荐系统.该系统包括模糊用户喜好档案、模糊筛选代理、模糊推荐代理、交互代理和档案修正代理.模糊用户喜好档案用于描述用户喜好和厌恶特征;模糊筛选代理基于模糊逻辑推理,将即将播放节目的元数据与用户喜好档案进行匹配,筛选出用户可能感兴趣的节目;模糊推荐代理根据预计的用户对推荐节目感兴趣程度排序,列出节目推荐表;交互代理收集用户清晰和隐含的反馈信息;档案修正代理根据用户的反馈,动态修正用户喜好档案中的特征参数值.实验结果显示该系统推荐效果可靠. In order to imitate human' s thinking mode to recommend personalized TV program of high quality to users, a multi-agent recommendation system based on fuzzy logic is proposed under TV-Anytime environment. The system includes user' s fuzzy preference archive, fuzzy filtering/ranking agent, fuzzy recommendation agent, user interaction agent, and archive updating agent. The user' s fuzzy preference archive is used to describe both "like" and "dislike" features of users. Based on fuzzy logic inference, the filtering/ranking agent matches metadata of the incoming programs with user' s fuzzy preference archive, and selects programs that the user may be interested in. The fuzzy recommendation agent sorts the programs according to the degree of the expected user' s interest, and then presents recommended program list. The user interaction agent collects user' s both explicit and implicit feedback. The archive updating agent modifies the characteristic parameters in the user' s archive dynamically according to the user' s feedback. Results of the experiments show that the recommendation effect of the system is reliable.
出处 《上海海事大学学报》 北大核心 2011年第4期71-75,共5页 Journal of Shanghai Maritime University
基金 交通运输部科技项目(2009-329-810-020) 上海市教育委员会重点学科建设项目(J50604) 上海海事大学校基金(20110316)
关键词 多代理推荐系统 潜在需求 喜好档案 自学习 TV—Anytime multi-agent recommendation system potential need preference archive self-learning TV- Anytime
  • 相关文献

参考文献10

  • 1COTFER P, SMYTH B. PTV: personalized TV guides[C]//Proc 12th Conf on Innovative Applications of Artificial Intelligence, Austin, Texas, 2000 : 287-295.
  • 2Duco DAS, Herman ter HORST. Recommender Systems for TV[ C ]// Proc AAAI, 1998: 243-251.
  • 3KURAPATI K, GUTTA S, SCHAFFER D, et al. A multi-agent TV recommender [C]//Proc User Modeling 2001 : Personalization in Future TV Workshop, Sonthofen, Germany, 2001: 458-463.
  • 4TV-Anytime system description document (informative with mandatory appendix B)[Z]. WD608, TV-Anytime Forum, Aug. 2004.
  • 5TV-Anytime metadata specifications document[Z]. SP003v12 Part A Appendix B, TV-Anytime Forum, Jun. 2005.
  • 6FININ T, FRITZSON R, MCKAY D, et al. KQML as an agent communication language[C]//Proc 3rd Int Conf on Inform and Knowledge Manage, 1994: 456-463.
  • 7杨神化,施朝健,刘宇宏,胡勤友.多agent理论和技术在自动避碰决策系统中的应用[J].上海海事大学学报,2007,28(1):121-125. 被引量:7
  • 8BABUSKA R. Fuzzy modeling for control[M]. Norwell, MA: Int Series in Intelligent Technologies, Kluwer Academic Publishers, 1998.
  • 9陈锦标,吴广宇,应士君.基于灰色模糊综合评估法的大型船舶模拟操纵评价[J].上海海事大学学报,2008,29(4):1-5. 被引量:12
  • 10JIS X4160-2007, XML Path Language (XPath) 2.0[S].

二级参考文献15

  • 1赵劲松,宋淑华.船舶驾驶员主观碰撞危险度的测度[J].大连海运学院学报,1990,16(1):29-31. 被引量:13
  • 2贺爱萍.用中位数考察考试成绩更合理[J].西北医学教育,2007,15(2):319-320. 被引量:6
  • 3应士君,施朝健,杨神化.基于bayes模型的遗传算法在避碰航路设计中的应用[C]//全国博士生学术论坛(交通运输工程学科)论文集(下册).北京:中国铁道出版社,2005:67-72.
  • 4ITOH H.Human factors for human error prevention[C]//YUKIMACHI T.Vessels,Techno system,Tokyo,2004.
  • 5COENEN F P.Knowledge-based collision avoidance[J].The Journal of Navigation,1980,42 (1):107-116.
  • 6TSURUTA S.Basic research on an expert system for navigation at sea(-collision avoidance expert system-)[J].The Journal of Japan Institute of Navigation,1987,77:133-139.
  • 7INAISH M.Basic research on a collision avoidance system using neural networks[C]//Proceedings IAIN 91,1991.
  • 8LIU Yuhong.A fuzzy-neural inference network for ship collision avoidance[C]//2005 IEEE The Third International Conference on Machine Learning and Cybernetics (ICMLC 2005):4 754-4 759.
  • 9MIERZCHALSKI R S.Modeling of ship trajectory in collision situations by an evolutionary algorithm[J].IEEE Tranactions on Evolutionary Computation,2000,4 (3):227-241.
  • 10YANG Shenhua,LI Lina,SHI Chaojian.ECDIS based decision-making system for vessel automatic collision avoidance on restricted water area[C]//Proceedings of WCICA 2006,9:7 118-7 122.

共引文献17

同被引文献10

  • 1RYEN W W. The use of implicit evidence for relevance feedback in Web retrieval[ J]. Lecture Notes in Comput Sci, 2002, 2291 : 449-479.
  • 2ZIGORIS P, ZHANG Y. Bayesian adaptive user profiling with explicit & implicit feedback [ C ]//Proe 15th ACM Int Conf Inform & Knowledge Man- age, ACM, 2006: 397-404.
  • 3SCHMITT B H. Customer experience management: a revolutionary approach to connecting with your customers[ M ]. New Jersey: Wiley, 2003: 234-238.
  • 4GILKS W R, RICHARDSON S, SPIEGELHALTER D J. Markov chain Monte Carlo in practice[ M]. London: Chapman & Hall, 1996: 56-60.
  • 5HUANG J, WHITE R W, DUMAIS S. No clicks, no problem: using cursor movements to understand and improve search [ C ]//Proc SIGCHI Conf Human Factors Computing Systems, ACM, 2011 : 1225-1234.
  • 6BALL L J, LUCAS E J, MILES J N V, et al. Inspection times and the selection task: what do eye-movements reveal about relevance effects? [ J] Q J Exp Psychol, 2003, 56(6) : 1053-1077.
  • 7DIXSON B J. Eye tracking reveals men's appreciation of the female form[J]. Human Natural, 2010, 21: 355-370.
  • 8PUOLAMAKI K, AJANKI A, KASKI S. Learning to learn implicit queries from gaze patterns[ C]//Proc 25th Int Conf Machine Learning, ACM 2008 : 760-767.
  • 9GLAHOLT M G, WU M C, REINGOLD E M. Predicting preference from fixations[J]. PsychNology J, 2009, 7(2) : 141-158.
  • 10王贤文,徐申萌.中国C2C淘宝网络店铺的地理分布[J].地理科学进展,2011,30(12):1564-1569. 被引量:56

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部