摘要
为了研究随机载荷对弹性结构动响应随机性的影响,基于有限体积法(FVM)发展了一种求解弹性结构随机动响应统计特性的计算方法.基于FVM的控制方程推导出响应量对基本随机变量偏导的显式求解方程,接着将响应量在随机变量的均值点处进行泰勒展开,并在展开式两端同时取均值或方差可求得响应量的均值和方差;最终,考虑炸药的装药量和爆距作为基本随机变量,研究了固支板在远场爆炸载荷作用下的随机动响应问题,并与蒙特卡洛法的结果作了对比,证明了该方法的可行性,同时也为工程应用提供了参考.通过对结构动响应变异系数的分析表明:在随机爆炸载荷作用下,弹性体内各点动响应的变异系数绝对值是相同的,且不随时间变化.
To study the influence of a random load on the dynamic stochastic responses of an elastic structure,a numerical method was presented based on the finite volume method(FVM)to calculate the statistical characteristics of responses.The partial derivative of responses with respect to basic random variables was obtained through a governing equation of the FVM;and then the mean values and response variances were obtained based on Taylor expansion.Considering the explosive charge and distance from structure to explosive as basic random variables,dynamic stochastic analysis of a clamped plane subjected to an explosion was studied.After comparison with the Monte-Carlo method,the result indicates this method is feasible,and provides references for engineering application.Based on analysis of variation coefficients for responses,the absolute value of the variation coefficient is the same at different points in an elastic structure subjected to an explosion,and the value does not change over time.
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2011年第11期1447-1451,共5页
Journal of Harbin Engineering University
基金
国家自然科学基金资助项目(10772055)
关键词
弹性结构
动力学随机分析
爆炸
有限体积法
蒙特卡洛法
随机载荷
elastic structure
dynamic stochastic analysis
explosion
finite volume method
Monte-Carlo method
random load