期刊文献+

一个三阶基本无振荡的差分格式 被引量:1

A Third-order Non-oscillatory Difference Scheme
下载PDF
导出
摘要 利用待定系数法推导了一阶空间变量导数的三阶差分逼近,进而将通常对流通量的逼近方法推广到对通量导数的逼近.通过引入TVD限制器函数,对导数的三阶差分逼近进行校正,并结合三阶Runge-Kutta时间离散方法,构造了求解双曲型守恒律方程的一个三阶基本无振荡差分格式.该格式具有形式简单、计算量小且易于推广到非均匀网格等优点.通过给出的两个标准数值算例,验证了格式的有效性. In this paper,a third-order approximation of the first-order space derivative is deduced by applying an undetermined coefficient method.Then the general approximation method for the convection flux to the derivative of the flux is extended.After introducing the TVD limiter function,we correct the third-order derivative difference approximation.Then we propose a third-order essential non-oscillatory difference scheme for solving hyperbolic conservation laws by employing the third-order Runge-Kutta method to discretize the time variable.This scheme has the advantages of simple form,less computational cost and easiness to extend the case of non-uniform grid.Finally,two standard numerical examples are given to verify the effectiveness of the scheme.
作者 郑华盛 刘珺
机构地区 南昌航空大学
出处 《南昌航空大学学报(自然科学版)》 CAS 2011年第4期33-35,62,共4页 Journal of Nanchang Hangkong University(Natural Sciences)
关键词 双曲型守恒律 待定系数法 TVD限制器函数 差分格式 Runge-KuttaTVD时间离散 hyperbolic conservation laws undetermined coefficient method TVD limiter function difference scheme Runge-Kutta TVD time discretization
  • 相关文献

参考文献1

二级参考文献10

  • 1张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报,1988,7(2):1431-165.
  • 2Harten A. High resolution schemes for hyperbolic conservation laws. J Comput Phys, 1983, 49:357~393
  • 3Yee HC. Construction of explicit and implicit symmetric TVD schemes and their applications. J Comput Phys,1987, 54:115~173
  • 4Harten A, Engquist B, Osher S, Chakravarthy. Uniformly high order accuracy essentially non-oscillatory schemes Ⅲ.J Comput Phys, 1987, 71:231~303
  • 5Sbu CW, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes Ⅱ. J Comput Phys, 1989, 83:32~78
  • 6李新亮.槽道湍流的直接数值模拟.[博士论文],北京:中国科学院力学研究所,2000(Li Xinliang.Direct numerical simulation of turbulent channel flow. [Ph D Dissertation],Beijing: Chinese Academy of Sciences, 2000 (in Chinese))
  • 7Jiang Zonglin, Takayama K, Chen Yaosong. Dispersion conditions for non-oscillatory shock capturing schemes and its applications. Computational Fluid Dynamics Journal,1995, 4(2): 137~150
  • 8Roe PL. Approximate Riemann solves, parameter vectors, and difference schemes. J Comput Phys, 1981, 43:357~372
  • 9Sod SA. A survey of several finite difference methods for systems of non-linear hyperbolic conservation laws. J Comput Phys, 1978, 27:1~31
  • 10Steger JL, Warming RF. Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods. J Comput Phys, 1981, 40:263~293

同被引文献7

  • 1Harten A.High resolution schemes for hyperbolic conservation laws[J].J Comput Phys,1983,49:357-393.
  • 2Nessyahu H,Tadmor E.Non-oscillatory central differencing for hyperbolic conservation laws[J].J Comput Phys,1990,87:408-463.
  • 3Harten A,Osher S.Uniformly high-order accurate nonoscillatory schemes I[J].SIAM J Numer Anal,1987,24:279-309.
  • 4Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock-capturing schemes[J].J Comput Phys,1988,77:439-471.
  • 5Zennaro M.Natural continuous extensions of RungeKutta methods[J].Math Comput,1986,46(173):119-133.
  • 6明万元,郑华盛,杨海波,黄香蕉.一类基于通量分裂和最小二乘拟合的差分格式[J].南昌航空大学学报(自然科学版),2011,25(1):63-66. 被引量:2
  • 7明万元,郑华盛,黄香蕉.一类基于通量分裂的时空二阶精度差分格式[J].南昌航空大学学报(自然科学版),2011,25(4):36-40. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部