期刊文献+

一类具有分布时滞高阶微分方程的周期解

Periodic Solutions for a Kind of High-Order Differential Equations with Distributed Delay Arguments
下载PDF
导出
摘要 利用Mawhin重合度理论,研究了一类具有分布时滞的高阶p-Laplacian中立型微分方程,获得了其周期解存在性的一些新结果. By using the continuation theorem of coincidence degree theory developed by Mawhin, we study a kind of high-order p-Laplacian neutral functional differential equation with distributed delay arguments. Some new results on the existence of periodic solutions are obtained.
作者 陈仕洲
出处 《韩山师范学院学报》 2011年第6期1-7,共7页 Journal of Hanshan Normal University
关键词 分布时滞 P-LAPLACIAN 中立型泛函微分方程 周期解 重合度理论 distributed delay p-Laplacian neutral functional differential equation periodic solucoincidence degree
  • 相关文献

参考文献6

二级参考文献28

  • 1Cheng W S, Ren J L. On the existence of periodic solutions for p-Laplacian generalized Lienard equation. Nonlinear Anal., 2005, 60: 65-75.
  • 2Lu S P, Ge W G, Zheng Zuxiu. Periodic solutions to neutral differential equation with deviating arguments. Appl. Math. Comput., 2004, 152: 17-27.
  • 3Hale J K. Theory of Functional Differential Equations. New York: Springer-Verlag, 1977.
  • 4Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Berlin: Springer-Verlag, 1977.
  • 5Del Pino M A, Elgueta M, Manasevich R F. A homotopic deformation along p of a Lerray-Schauder degree result and existence for (|u'|^P-2u')'+ f(t,u) = 0, u(0) = u(T) = 0,p > 1. J. Differential Equations, 1989, 80: 1-13.
  • 6Del Pino M A, Manasevich R F. Multiple solutions for the p-Laplacian under global nonresonance. Proc. Ameri. Math. Soc., 1991, 112: 131-138.
  • 7Fabry C, Fayyad D. Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities. Rend. Istit. Univ. Trieste, 1992, 24: 207-227.
  • 8Manasevich R F, Mawhin J. Periodic solutions for nonlinear systems with p-Laplacian like operators. J. Differential Equations, 1998, 145: 367-393.
  • 9DinR T, Iannacci R, Zanolin F. Existence and multiplicity results for periodic solutions of semilinear Duffing equations. J. Differential Equations, 1993, 105: 364-409.
  • 10DinR T, Iannacci R, Zanolin F. Time-maps for the solvability of perturbed nonlinear Duffing equations. Nonlinear Anal. Theory, Methods and Applications, 1991, 17: 635-653.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部