期刊文献+

面向监控视频的行为模式挖掘

An activity mining model for surveillance video
原文传递
导出
摘要 行为模式挖掘技术是监控视频语义分析的重要组成,由于先验知识的缺乏与特征维数约束,难以准确定义参数化挖掘模型的结构复杂度,通过非参数化的无限高斯混合聚类运动特征得到原子行为模式,并估计其持续时间分布,使用局部特征维测试验证了挖掘模型的运动相似性假设。结果表明所得到的行为模式集准确刻画了场景的潜在运动语义,而通过行为中存在的时间多形态分布进一步发现了隐藏运动知识。 The activity pattern mining technique is the key component of semantic analysis for surveillance video.Because of the lack of prior and high-dimensional feature constraints,the complexity of the model structure of the parametric mining model is difficult to be precisely defined.Non-parametric clustering of motion feature by infinite Gaussian mixture was used to get the elementary activity patterns,based on which duration distribution was estimated.The partial-dimension test for feature validated the motion similarity hypothesis existing in the mining model.The results showed that the obtained activity patterns precisely reflected motion semantics of the scene,and that the multi-modality temporal distribution existing in activity can be further used to discover the hidden knowledge of motion.
出处 《山东大学学报(工学版)》 CAS 北大核心 2011年第6期24-30,共7页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(60902093)
关键词 视觉监控 场景分析 无限高斯混合模型 行为模式挖掘 visual surveillance scene analysis infinite Gaussian mixture model activity pattern mining
  • 相关文献

参考文献20

  • 1HU Weiming, TAN Tieniu, MAYBANK Steve. A survey on visual surveillance of object motion and behaviors [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part C : Applications and Reviews, 2004, 34 ( 3 ) : 334- 352.
  • 2焦礼成,公茂果,王爽,等.自然计算、机器学习与图像理解前沿[M].西安:电子科技大学出版社,2008:143-147.
  • 3TURAGA Pavan, CHELLAPPA Rama, SUBRAHMA- NIAN V S, et al. Machine recognition of human activi- ties: a survey[J].IEEE Transactions on Circuits and Sys- tems for Video Technology, 2008, 18 (11 ) : 1473-1488.
  • 4MAKRIS Dimitrios, ELLIS Tim. Path detection in video surveillance[J].Image and Vision Computing, 2002, 20 (12): 895-903.
  • 5XIANG Tao, GONG Shaogang. Beyond tracking:model- ing activity and understanding behavior [ J ]. International Journal of Computer Vision, 2006, 67( 1 ) : 21-51.
  • 6WANG Xiaogang, MA Keng Teck, NG Gee-Wah, et al. Trajectory analysis and semantic region modeling using a nonpararnetric bayesian model [C ]//Proceedings of IEEE Conference On Computer Vision And Patter Recognition. Anchorage : IEEE Computer Society, 2008 : 1-8.
  • 7WANG Xiaogang, MA Xiaoxu, GRIMSON Eric. Unsu- pervised activity perception in crowded and complicatedscenes using hierarchical bayesian models[J].IEEE Transactions on PAMI, 2009, 31 (3) : 539-555.
  • 8LAVEE G, BORZIN A, RIVLIN E, et al. Building petri nets from video event ontology [ C]//Proceedings of 3rd International Conference on Advances in Visual Compu- ting. Nevada: Springer-Verlag, 2007:442-451.
  • 9BORZIN A, RIVLIN E, RUDZSKY M. Surveillance in- terpretation using generalized stochastic petrinets [ C ]//8th International Workshop on Image Analysis for Multimedia Interactive Services. Santorini: IEEE Computer Society, 2007 :102-118.
  • 10LAVEE G, RUDZSKY M, RIVLIN E, et al. Video e- vent modeling and recognition in generalized stochastic Petri nets [ J ]. IEEE Transaction on Circuits and Systems for Video Technology, 2010, 20(1): 102-118.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部