期刊文献+

非二值化图序列的Community挖掘

Community mining on non-binary graph sequences
原文传递
导出
摘要 针对现有图序列Community发现方法的缺陷,提出了一种基于最小描述长度原理的非二值化图序列的Com-munity挖掘方法。根据其具有某些NP完全问题的性质,对问题进行预处理得到相对较好的初始输入。基于图序列编码长度的概念,通过重组并结合其中的灰度信息对优化问题进行求解,高效地解决了Community挖掘问题。借鉴遗传算法的随机和择优思想,避免在求解过程中被困于局部最小。此外,所提算法能随着时间演变及时判断出Community结构的变化。最后通过实验验证了该方法的有效性。 Against the defects of existing graph sequences community mining methods,a community mining method on non-binary graph sequences based on the minimum description length principle was proposed.According to its nature of complete NP-hard problem,it was processed by preprocessing on the problem and a relatively good initial input was obtained.Based on the concept of graph sequences coding length,an optimization problem was solved by regrouping rows and columns to integrate gray information.And then a community mining problem was effectively solved.It could avoid being trapped in the local minimum by using the random and optimization mind of genetic algorithm in the processing.In addition,the change of community structure could be detected with passage of time which is critical for reality problems.Finally,an experiment validated the effectiveness of this method and its high performance.
作者 汤军 陈松灿
出处 《山东大学学报(工学版)》 CAS 北大核心 2011年第6期37-42,共6页 Journal of Shandong University(Engineering Science)
关键词 图序列 挖掘 COMMUNITY 代价函数 优化 graph sequences mining community cost function optimization
  • 相关文献

参考文献16

  • 1GIRVAN M, NEWMAN M J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99 (12) : 7821- 7826.
  • 2NEWMAN M. Detecting community structure in networks[J].he European Physical Journal B-Condensed Matter and Complex Systems, 2004, 38(2):321-330.
  • 3WILLIAMS C. Social networks in political campaigns: facebook and the 2006 midterm elections [ C ]//Annual Meeting of the American Political Science Association.[S. 1] :[s. n. ], 2007:1-5.
  • 4NG A, JORDAN M, WEISS Y. On spectralclustering : a- nalysis and an algorithm [ C ]//Neural Information Pro- cessing Systems (2001). [S. 1] : MIT Press, 2001:849- 856.
  • 5HAGEN L, KAHNG A. New spectral methods for ratio cut partitioning and clustering [ J ]. IEEE Trans Comput Aided Des, 1992,11 (9) : 1074-1085.
  • 6BACH F, JORDAN M. Learning spectral clustering [ C]//Advances in Neural Information Processing Sys- tems. Cambridge: MIT Press, 2004: 305-312.
  • 7DHILLON I, MALLELA S, MODHA D. Information- theoretic co-clustering [ C ]//ACM Special Interest Group on Knowledge Discovery and Data Mining (2003). New York, USA: ACM, 2003: 89-98.
  • 8DHILLON S. Co-clustering documents and words using bipartite spectral graph partitioning [ C]//Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA:ACM, 2001:269-274.
  • 9DAI W, XUE G, YANG Q. Co-clustering based classifi- cation for out-of-domain documents [ C]//Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mning. New York, USA: ACM, 2007:210-219.
  • 10JOHNSON D, KRISHNAN S, CHHUGANI J, et al. Compressing large boolean matrices using recordering techniques [ C ]// International Conference on Very Large Data Bases, Toronto, Canada: IEEE, 2004: 13- 23.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部