期刊文献+

欧式期权波动率校准反问题的正则化算法

A Regularized Algorithm for the Inverse Problem of Calibrating Implied Volatility of European Option
下载PDF
导出
摘要 标的资产的隐含波动率校准问题无论在理论上还是实际应用中都有重要意义.对于欧式期权,在Black-Scholes模型框架下,提出了一个正则化的最小二乘算法,有效地解决了在期权市场价格已知前提下的隐含波动率校准反问题.最后,通过数值算例说明了方法的有效性. Calibrating the implied volatility of underlying asserts is very important for both theoretical and practical applications. For European options, in the framework of Black-Scholes model, a regularized least squares algorithm is proposed in this paper, which can effectively solve an inverse problem of calibrating the implied volatility a numerical example on the premise that the market prices of option are known. At the end of this paper, is given to show that this method is effective.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期50-56,共7页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(10971224) 北京市优秀人才培养资助项目(2010D005022000008) 北京联合大学项目(zk201001x)
关键词 欧式期权 校准 隐含波动率 反问题 正则化 European option calibration implied volatility inverse problem regularization
  • 相关文献

参考文献8

  • 1BLACK F, SCHOLES M. The Pricing of Options and Corporate Liabilities [J]. Political Econ, 1973, 81(3): 637-659.
  • 2DUPIRE B. Pricing with a Smile [J]. Risk, 1994, 7: 18-20.
  • 3ACHDOU Y, PIRONNEAU O. Volatility Smile by Multilevel Least Square [J].International Journal of Theoretical and Applied Finance, 2002, 5(6), 619-643.
  • 4JIANG LISHANG, TAO Yi. Identifying the Volatility of Underlying Assets From Option Prices[J]. Inverse Problem, 2001, 17: 137-155.
  • 5EGGER H, ENGL H W. Tikhonov Regularization Applied to the Inverse Problem of Option Pricing.. Convergence Anal- ysis and Rates [J]. Inverse Problems, 2005, 21: 1027-1045.
  • 6ANDERSEN L, BROTHERTON-RATCLIFFE R. The Equity Option Volatility Smile: an Implicit Finite-Difference Ap- proach [J].Journal of Computational Finance, 1998, 1(2) : 5-37.
  • 7COLEMAN T F, LI YUYING, VERMA A. Reconstructing the Unknown Local Volatility Function [J]. Journal ofComputational Finance, 1999, 2(3): 77-102.
  • 8ACHDOU Y, PIRONNEAU O. Computational Methods for Option Pricing of Frontiers in Applied Mathematics [M]. Philadelphia PA.. Siam, 2005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部