期刊文献+

亏秩线性方程组PSD迭代法的最优参数

The optimal parameters of the PSD method for rank deficient linear systems
原文传递
导出
摘要 利用数形结合的方法得到了亏秩线性方程组Ax=b的PSD迭代法在一般情形下的最优参数及最优谱半径,其中A∈Cmr×n且r<min{m,n},x∈Cn,b∈Cm,并以实例说明。 Combining geometry and algebra,the optimal parameters and the optimal spectral radius of the PSD method for rank deficient linear systems Ax=b are acquired,where A∈Cm×nr and rmin{m,n},x∈Cn,b∈Cm,and then examples are given to illustrate the results.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第12期13-18,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(60671063)
关键词 亏秩线性方程组 PSD迭代法 最优参数 最优谱半径 rank deficient linear systems the PSD iterative method the optimal parameters the optimal spectral radius
  • 相关文献

参考文献8

  • 1BERMAN A, PLEMMONS R J. Cones and iterative methods for best least squares solutions of linear systems [ J ]. SIAM J Numer Anal, 1974, 11:145-154.
  • 2NEUMANN M. Subproper splitting for rectangular matrices [ J ]. Linear Algebra Appl, 1976,14:41-51.
  • 3MILLER V A, NEUMANN M. Succesive overrelaxafion methods for solving the rank deficient linear squares problem [ J ]. Linear Algebra Appl, 1987, 88-89:533-557.
  • 4TIAN Hongjiong. Accelerated overrelaxation methods for deficient linear systems[ J]. Appl Math Comp, 2003, 140:485-499.
  • 5ZHENG Bing, WANG Ke. On accelerate overrelaxation methods for rank deficient linear systems [ J ]. Appl Math Comp, 2006, 173:951-959.
  • 6陈永林.亏秩线性最小二乘问题的AOR迭代法的半收敛性[J].南京师大学报(自然科学版),2005,28(4):1-7. 被引量:3
  • 7岳强,畅大为.亏秩线性方程组的PSD迭代解法[J].山东大学学报(理学版),2009,44(10):30-35. 被引量:2
  • 8林喜梅,畅大为,陈军刚.预条件同时置换(PSD)迭代法的收敛性分析[J].高等学校计算数学学报,2008,30(2):117-132. 被引量:5

二级参考文献25

  • 1陈永林.约束奇异半正定线性方程组的迭代解法[J].南京师大学报(自然科学版),2005,28(3):1-6. 被引量:2
  • 2BERMAN A, PLEMMONS R J. Cones and iterative methods for best least squares solutions of linear systems[J]. SIAM J Numer Anal, 1974, 11 : 145-154.
  • 3MILLER V A, NEUMANN M. Succesive overrelaxation methods for solving the rank deficient linear squares problem[J]. Linear Algebra Appl, 1987, 88-89:533-557.
  • 4TIAN Hongjiong. Accelerated overrelaxafion methods for deficient linear systems[ J]. Appl Math Computat, 2003, 140:485-499.
  • 5ZHENG Bing, WANG Ke. On accelerate overrelaxation methods for rank deficient linear systems[ J]. Appl Math Computat, 2006, 173: 951-959.
  • 6ZHENG Bing, WANG Ke. Symmetric successive overrelaxation methods for solving the rank deficient linear least squares problem[ J]. Appl Math Computat, 2005, 169:1305-1323.
  • 7DARVISHI M T, KHOSRO-AGHDAM R. Symmetric successive overrelaxation methods for rank deficient linear systems[ J]. Appl Math Computat, 2006, 173:404-420.
  • 8NEUMANN M. Subproper splitting for rectangular matrices[ J]. Linear Algebra Appl, 1976, 14: 41-51.
  • 9CLINE R E. Inverses of rank invariant powers of a matrix[J] .SIAM J Numer Anal, 1968, 5:182-197.
  • 10Ben-Israel A, Greville T N E. Generalized Inverses : Theory and Applications [ M ]. 2nd ed. New York : Springer Verlag,2003.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部