期刊文献+

一种基于混沌思想和邻域探测机制的PSO算法

A PSO Algorithm Based on Chaos and Self-adaptive Neighborhood Explored
下载PDF
导出
摘要 在分析基本PSO算法早熟收敛原因的基础上,提出一种基于混沌思想和自适应邻域探测机制的粒子群优化算法(CANE-PSO).该算法先引入混沌思想对粒子种群进行位置初始化,以提高初始种群的多样性,再引入随机的邻域探测机制,并引入全局极值变异算子,增强了算法的全局搜索能力.通过与其它三个改进算法比较,结果表明CANE-PSO优化效率有较大的提高,较有效地避免了早熟收敛问题. Based on the analysis of the cause of the premature convergence,a novel particle swarm optimization algorithm based on chaos and self-adaptive neighborhood explored is proposed,which is called CANE-PSO.Chaos is introduced to initialize the particle's position to improve the diversity,and the neighborhood detection mechanism and global extreme mutation operator are also introduced to enhance the global search ability.Compared with other three improved algorithms,the CANE-PSO converges faster,and it prevents the premature convergence problem more effectively.
作者 林博艺
出处 《襄樊学院学报》 2011年第11期35-40,共6页 Journal of Xiangfan University
关键词 混沌思想 领域探测 粒子群优化(PSO) CANE-PSO Chaos Neighborhood exploration PSO CANE-PSO
  • 相关文献

参考文献18

  • 1PARSOPOULOS KE,VRAHATIS MN. On the computation of all global minimizers through particle swarm optimization [J]. IEEE Trans.on Evolutionary Computation, 2004, 8(3): 211-224.
  • 2吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:450
  • 3CLERC M, KENNEDY J. The particle swarm: Explosion stability and convergence in a multi-dimensional complex space [J]. IEEE Trans. on Evolutionary Computation., 2002, 6(1): 58-73.
  • 4黄辉先,陈资滨.一种改进的粒子群优化算法[J].系统仿真学报,2007,19(21):4922-4925. 被引量:28
  • 5钟伟才,刘静,刘芳焦,李成.组合优化多智能体进化算法[J].计算机学报,2004,27(10):1341-1353. 被引量:34
  • 6MENDES R, KENNEDY J, NEVES J. The fully informed particle swarm: Simpler, maybe better [J]. IEEE Trans, on Evolutionary Computation, 2004, 8(3): 204-210.
  • 7VAN DEN BERGH F, ENGELBRECHT AP. Cooperative learning in neural networks using particle swarm optimizers [J]. South African Computer Journal, 2000, 9(11): 84-90.
  • 8BERGH E ENGELBRECHT A E A cooperative approach to particle swarm optimization [J]. IEEE Trans. on Evolutionary Computation. 2004, 8(3): 225-239.
  • 9TRELEA 1C. The particle swarm optimization algorithm: Convergence analysis and parameter selection [J]. Information Processing Letters, 2003, 85(6): 317-325.
  • 10潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67

二级参考文献76

共引文献1065

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部