期刊文献+

物流中心选址的多目标优化模型 被引量:2

Multi-Objective Optimization Model for the Location of Logistics Centers
下载PDF
导出
摘要 针对一个经纬型网络中的最优选址问题,借鉴选址问题的已有理论和方法,建立了一个新的数学模型.研究了该模型的实际可行算法,结果表明该算法所求解是最优的,为运输、供销、物流系统的实际部门提供了有效的方法. This paper established a comprehensive mathematical model for the location optimization of one or several logistics centers in order to minimize the total transport time and transport cost based on the existent theories. And the results show that the proposed model is suitable for the actual situation of logistics, which provides an effective method for logistics and supply-chain technique management.
出处 《经济数学》 北大核心 2011年第4期43-46,共4页 Journal of Quantitative Economics
基金 河南省教育厅自然科学研究计划项目(2010B110006)
关键词 物流中心 选址模型 多目标优化 经纬网络 覆盖 logistics centers location model multiple-objective optimization rectilinear grid network overlay
  • 相关文献

参考文献6

二级参考文献23

  • 1胡双增 张明.物流系统工程[M].北京:清华大学出版社,2000.58-62.
  • 2Kaas, R. , Goovaerts, M. J. , Dhaene, J. and Denuit, M.Modern Actuarial Risk Theory[M]. Dordrecht: Kluwer Acad. Publ, 2001.
  • 3Kaas, R., Van Heerwaarden, A. E. and Goovaerts, M. J.Ordering of actuarial risks[ M]. Caire Education Series,Amsterdam, 1994.
  • 4Bachtel, C. and Jayanth, J. Supply chain management: A strategic perspective [ J ]. The International Journal of Logistics Management, 1997,8 ( 1 ).
  • 5Bowersox, D. J. and Closs, D. J. Logistical Management:The Integrated Supply Chain Process[ M]. McGraw-Hill,Inc. 1998.
  • 6Dhaene, J. , Denuit, M., Goovaerts, M. J. , Kaas, R. and Vyncke, D., The concept of comono-tonicity in actuarial science and finance: theory. Insurance Math. Econom[M]. 付印. 2002a.
  • 7Denuit, M. , De Vylder, F. and Lefevre, C. Extrema with respect to s-convex orderings in moment spaces: a general solution [ J ]. Insursance: Methematics & Economics,1992,24: 201-217.
  • 8Donna, L. Doane. Cooperation, Technology and Japanese Development[ M]. Westview Press, 1995.
  • 9Goovaerts, M. J. , Kaas, R. , Van Heerwaarden, A. E. and Bauwelinckx T. Effective actuarial methods [ M ]. North-Holland, Amsterdam, 1990.
  • 10Kaas, R, Dhaene, J. and Goovaerts. M. J. Upper and lower bounds for sums of random variables[J]. Insurance Mathematics & Economics,2000, 27,151 - 168.

共引文献103

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部