期刊文献+

基于粒子滤波的灰度目标跟踪算法 被引量:2

A Gray Object Tracking Algorithm Based on Particle Filter
下载PDF
导出
摘要 粒子滤波主要利用粒子集来表示概率,可以用在任何形式的状态空间模型上.提出了一种基于粒子滤波的灰度图像目标跟踪方法,粒子滤波适合各种形式状态空间模型.算法目标特征采用了灰度直方图、灰度梯度直方图对灰度图像序列进行跟踪.粒子滤波跟踪算法有状态转移和状态观测两大重要模型.利用高权值的粒子替代低权值粒子这样的粒子重采样来保证粒子集的健壮性,得到目标最终位置.利用Matlab进行仿真证明了本文算法的有效性和稳健性. With the development of science and technology,tracking Technology is widely used in the daily life. This paper proposed a target tracking method of gray level image based on particle filter which is fit for all kinds of form state space model. The algorithm present in this article makes use of the gray information and the gradient characteristics of the target to track the object in gray level images. A state transfer and observe model of the system is constructed in this method. In order to guarantee the robustness of the particle set,particles of high weights are used to instead of the low ones to sample the particles and finally obtain the location of the target. The effectiveness and robustness of this algorithm is simulated by Matlab.
作者 杨元挺
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期33-36,共4页 Journal of Xiamen University:Natural Science
基金 福建省教育厅项目(JK2009001)
关键词 粒子滤波 灰度信息 椭圆模板 状态模型 particle filter gray information ellipses template state model
  • 相关文献

参考文献5

二级参考文献22

  • 1王守觉,曲延锋,李卫军,覃鸿.基于仿生模式识别与传统模式识别的人脸识别效果比较研究[J].电子学报,2004,32(7):1057-1061. 被引量:46
  • 2邵文坤,黄爱民,韦庆.目标跟踪方法综述[J].影像技术,2006,18(1):17-20. 被引量:24
  • 3王守觉,孙华.一种基于矢量关系运算的人脸检测算法[J].微计算机信息,2006,22(10S):294-296. 被引量:5
  • 4R L Hsu,M Abdel-Mottaleb,A K Jain. Face detection in color images[ J]. IEEE Trans Patt Anal Mach Intell, 2002,24(5):696- 706.
  • 5Tao Yang,Stan Z Li,Quan Pan,et al.Real-time and accurate segmentation of moving objects in dynamic scene[C]//ACM Multimedia-2nd International Workshop on Video Surveillance and Sensor Networks.New York.October 10-16,2004.
  • 6J L Barron,D J Fleet,S S Beauchemin,et al.Performance of optical flow techniques[C]// IEEE,1992:236-242.
  • 7Shijun Sun,David Haynor,Yongmin Kim.Motion estimation based on optical flow with adaptive gradients[C]//IEEE,2000:852-855.
  • 8Dorin Comaniciu,Visvanathan Ramesh,Peter Meer.Kernel-based object tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 9COMANICIU D, RAMESH V, MEER P. Real-time tracking of nonrigid objects using mean shift [ C]//IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Press, 2000, 2:142 - 149.
  • 10YANG C, DURAISWAMI R, DAVIS L. Efficient mean-shift tracking via a new similarity measure [ C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Press, 2005:176 - 153.

共引文献17

同被引文献18

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部