期刊文献+

能量比在轴承故障评估中的应用研究 被引量:1

Application of Energy Ratio in Bearing Fault Assessment
下载PDF
导出
摘要 提出了一种新的用于轴承故障评估的特征提取方法,用AR模型将振动信号分离为确定性信号与随机信号,将随机信号与确定性信号的能量比作为反映轴承损伤发展过程的特征。应用该方法对凯斯西楚大学轴承预置故障试验数据和IMS中心轴承全寿命数据进行了分析。结果表明:能量比在定工况、变工况条件下较传统特征能够更为有效地反映轴承的损伤发展过程。 A newly developed feature extraction method is presented for bearing fault assessment. The AR model is used to separate the vibration signal into deterministic periodic signal and random signal. The energy ratio between random signal and deterministic periodic signal is calculated and taken as the feature of bearing damage development. At the end, the Case Western Reserve University's bearing preset fault data and the IMS center's run -to -failure data are analyzed by using this method. The results show that bearing fault features obtained by using traditional vibration analysis methods fail to show the bearing damage process while the fault features extracted using the proposed method give consistent bearing degradation trends under varying operation condition.
出处 《轴承》 北大核心 2012年第1期41-46,共6页 Bearing
基金 总装重点预研基金(9140A27020308JB34)
关键词 滚动轴承 故障评估 能量比 特征频率 rolling bearing fault assessment energy ratio characteristic frequency
  • 相关文献

参考文献10

  • 1He D, Bechhoefer E. Development and Validation of Bearing Diagnostic and Prognostic Tools Using HUMS Condition Indicators[ C]. IEEE Aerospace Conference, 2008.
  • 2He D, Beehhoefer E. Bearing Prognostics Using HUMS.Condition Indicators [ C ]. Proceedings of the 2008 AHS Forum.
  • 3Liu Y, He D. Damage Mechanics Based Bearing Progno- sis Using HUMS Condition Indicators [ C ]. Proceedings of 2008 MFPT Conference,2008.
  • 4Li R, He D, Bechhoefer E. On Quantification of Bearing Damage for Lifecycle Prognostics [ C ]. Proceedings of 2008 MFFr Conference.
  • 5Heng R, Nor M J M. Statistical Analysis of Sound and Vibration Signals for Monitoring Rolling Element Bear- ing Condition [ J ]. Applied Acoustics, 1998,53 : 211 - 226.
  • 6Gebraeel N, Lawley M, Liu R, et al. Residual Life Pre- dictions from Vibration - based Degradation Signals: A Neural Network Approach[ J ]. IEEE Transactions on In- dustrial Electronics ,2004,51:694 - 700.
  • 7Huang R,Xi L,Li X,et al. Residual Life Predictions for Ball Bearings Based on Self- organizing Map and Back Propagation Neural Network Methods [ J ]. Mechanical Systems and Signal Processing,2007,21 : 193 - 207.
  • 8Sawalhi N, Randall R B, Endo H. The Enhancement of Fault Detection and Diagnosis in Rolling Element Bear- ings Using Minimum Entropy Deconvolution Combined with Spectral Kurtosis[ J]. Mechanical Systems and Sig- nal Processing,2007,21:2 616-2 633.
  • 9Wang W, Wong A. Autoregressive Model - based Gear Fauk Diagnosis [ J ]. Journal of Vibration and Acoustics, 2002,124 : 172 - 179.
  • 10Qiu Hai, Lee Jay, Lin Jing. Wavelet Filter - based Weak Signature Detection Method and Its Application on Roller Bearing Prognostics [ J ]. Journal of Sound and Vibration,2006,289:1 066- 1 090.

同被引文献7

  • 1张星辉.基于动态贝叶斯网络的故障诊断和预测方法研究[D].石家庄:军械工程学院,2010.
  • 2苗学问.航空发动机主轴承使用寿命预测技术研究[D].北京:北京航空航天大学,2008.
  • 3CWRU Bearing Test Date [ EB/OL ]. http ://www/ee- cs/cwnu/edu/laboratory/bearing/. 2010.
  • 4Medjaher K, Moya J Y, Zerhouni N. Failure Prognostic by Using Dyn.amic Bayesian Networks[ C ]. 2nd IFAC Workshop on Dependable Control of Discrete Systems, 2009.
  • 5Yu Shun - zheng. Hidden Semi - Markov Models[ J ]. Artificial Intelligence,2010,174( 2 ) : 215 - 243.
  • 6Murphy K P. Dynamic Bayesian Networks: Representa- tion, Inference and Learning [ D ]. Berkeley : UC Berke- ley, 2002.
  • 7Dong M, He D. Hidden Semi - Markov Model - Based Methodology for Multi - Sensor Equipment Health Diag- nosis and Prognosis[ J ]. European Journal of Operation- al Research,2007,178( 3 ) : 858 - 878.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部