期刊文献+

一种泛在学习平台中个性化内容推荐机制

An Individual Materials Recommendation System on U-Learning Platform
下载PDF
导出
摘要 提出一种泛在学习平台中个性化内容推荐机制,以帮助学习者在泛在学习环境下获取个性化的学习内容.该机制在综合个性化信息的基础上,按内容相似度的顺序生成个性化的搜索结果,使用学习历史信息、当前地理位置信息及输入查询信息等,试图过滤掉不相关的搜索结果,以达到泛在环境下学习内容获取效率. An individual materials recommendation system, as a resource discovery and search middleware, is proposed to assist learners in obtaining information in a ubiquitous environment. The system can produce search results adaptive to specific situations in order of similarity degree based on the mixed information. Irrelevant results are filtered out by using the past usage history, current geographical information and input query, so as to enhance the efficiency of information retrieval in a ubiquitous environment.
作者 苏雪
出处 《深圳职业技术学院学报》 CAS 2012年第1期8-14,共7页 Journal of Shenzhen Polytechnic
基金 湖北省教育厅"十一五"规划课题(编号:2008B216)
关键词 泛在学习平台 信息过滤技术 学习内容推荐 U-Learning information filter technology learning materials recommendation
  • 相关文献

参考文献9

  • 1肖君,朱晓晓,陈村,陈一华.面向终身教育的U-learning技术环境的构建及应用[J].开放教育研究,2009,15(3):89-93. 被引量:19
  • 2Ruiz-Iniesta A, Jimenez-Diaz G, Gomez-Albarran M. Recommendation in Repositories of Learning Objects: A Proactive Approach that Exploits Diversity and Navigation-by-Proposing[C]. Ninth International Con- ference on Advanced Learning Technologies, 2009: 543-545.
  • 3Wan X, Ninomiya T, Okamoto T. LRMDCR: A Learner's Role-Based Multi Dimensional Collaborative Recom-mendation for Group Learning Support[C]. Eighth International Conference on Advanced Learning Techno- logies, 2008: 603-605.
  • 4刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:437
  • 5Resnick P, Iacovou N. Grouplens: An open architecture for collaborative filtering of nemews EC]. In proceedings of CSCW, 1994: 175-186.
  • 6Sarwar B, Karypis G, Konstan J, et al. Analysis of recommendation algorithms for e-commerceER]. Pro- ceedings of the 2nd ACM Conference on Electronic Commerce, 2000: 158-167.
  • 7Breese J S, Heckerrnan D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering [C]. Proceedings of Fourteenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, 1998: 43-52.
  • 8Kuwata S, Ueda N. One-shot collaborative filtering[J]. Computational Intelligence and Data Mining, 2007.
  • 9Ungar L H, Foster D E Clustering methods for coll- aborative filtering[C]. Proe Recommender Systems,Papers from 1998 Workshop, Technical ReportWS-98-08, MenloPark, 1998: 84-88.

二级参考文献106

  • 1陈婷.IT839:推进韩国电信业转型[J].中国电信业,2006(5):68-69. 被引量:1
  • 2李卢一,郑燕林.泛在学习环境的概念模型[J].中国电化教育,2006(12):9-12. 被引量:154
  • 3赵海兰.支持泛在学习(u-Learning)环境的关键技术分析[J].中国电化教育,2007(7):99-103. 被引量:59
  • 4Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 5Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 6梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 7Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 9Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 10Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70

共引文献454

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部