摘要
提出一种泛在学习平台中个性化内容推荐机制,以帮助学习者在泛在学习环境下获取个性化的学习内容.该机制在综合个性化信息的基础上,按内容相似度的顺序生成个性化的搜索结果,使用学习历史信息、当前地理位置信息及输入查询信息等,试图过滤掉不相关的搜索结果,以达到泛在环境下学习内容获取效率.
An individual materials recommendation system, as a resource discovery and search middleware, is proposed to assist learners in obtaining information in a ubiquitous environment. The system can produce search results adaptive to specific situations in order of similarity degree based on the mixed information. Irrelevant results are filtered out by using the past usage history, current geographical information and input query, so as to enhance the efficiency of information retrieval in a ubiquitous environment.
出处
《深圳职业技术学院学报》
CAS
2012年第1期8-14,共7页
Journal of Shenzhen Polytechnic
基金
湖北省教育厅"十一五"规划课题(编号:2008B216)
关键词
泛在学习平台
信息过滤技术
学习内容推荐
U-Learning
information filter technology
learning materials recommendation