期刊文献+

分层不动点及变分不等式的一种粘性迭代方法

A viscosity iteration mothod for hierarchical fixed point and variational inequalities
下载PDF
导出
摘要 设H是一实Hilbert空间,设{Tn}:H→H是一可数族的非扩张映像,且M:=∩∞n=1F(Tn)≠φ.求解了一可数族非扩张映像{Tn}关于另一非扩张映像S:H→H之一公共不动点,即是求一x*∈M,使得〈x*-Sx*,x*-x〉≤0,x∈M. Let H be a real Hilbert space, { Tn } :H→H be a countable family of nonexpansive mappings,and M:=∞∩n=1F(Tn)≠φ.The solutions of the countable family of nonexpansive mappings { Tn } are sought in the set of the fixed points of another nonexpan- sive mapping S:H→H, that is to find an x^*∈M, such that 〈x^*-Sx^*,x^*-x〉≤0,Ax∈M.
出处 《上海师范大学学报(自然科学版)》 2011年第6期644-649,共6页 Journal of Shanghai Normal University(Natural Sciences)
基金 校基础数学重点学科建设经费(DZL803) 上海市教委创新项目(09ZZ133)
关键词 分层不动点 不动点 非扩张映像 粘性逼近 hierarchial fixed point fixed point nonexpansive mapping viscosity approximation
  • 相关文献

参考文献6

  • 1张石生,王雄瑞,李向荣,陈志坚.分层不动点及变分不等式的粘性方法及应用[J].应用数学和力学,2011,32(2):232-240. 被引量:7
  • 2BRUCK J R E. Properties of fixed point sets of nonexpansive mappings in Banach spaces [ J ]. Trans Amer Math Soc, 1973, 179:251 - 262.
  • 3XU H K. Iterative algorithms for nonlinear operators[J]. J London Math Soc,2002,66( 1 ) :240 -252.
  • 4LIONS P L. Two remarks on the convergence of convex functions and monotone operators [ J ]. Nonlinear Anal, 1978,2 (5) : 553 - 562.
  • 5CABAT A. Proximal point algorithm controllled by a slowly vanishing term:applications to hierarchial minimization[ J ]. SI- AM J Optim,2005,15(2) :555 -572.
  • 6GOEBEL K,KIRK W A. Cambridge Studies in Advanced Mathematics 28. [ M ]. Cambridge: Cambridge University Press, 1990.

二级参考文献18

  • 1Goebel K, Kirk W A. Topics in Metric Fixed Point Theory [ M ]. Cambridge Studies in Advanced Mathematics. 28. Cambridge: Cambridge University Press, 1990.
  • 2Byrne C. A unified treatment of some iterative algorithms in signal processing and image reconstruction[ J]. Inverse Problems, 2004, 20( 1 ) : 103-120.
  • 3Censor Y, Motova A, Segal A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem [ J ]. J Math Anal Appl, 2007, 327 (2) : 1244-1256.
  • 4Cianciaruso F, Marino G, Muglia L, Yao Y. On a two-step algorithm for hierarchical fixed points and variational inequalities[ J]. J Inequalities and Appl, 2009, Article ID 208592, 13 pages, doi: 10.1155/2009/208692.
  • 5Cianciaruso F, Colao V, Muglia L, Xu H K. On an implicit hierarchical fixed point approach to variational inequalities [ J ]. Bull Austral Math Soc, 2009, 80 ( 1 ) : 117-124.
  • 6Malnge P E, Moudafi A. Strong convergence of an iterative method for hierarchical fixed point problems[J]. Pacific J Optim, 2007,3(3) : 529-538.
  • 7Marino G, Xu H K. A general iterative method for nonexpansive mappings in Hilbert space [J]. JMathAnalAppl, 2006, 318(1): 43-52.
  • 8Moudafi A. Krasnoselski-Mann iteration for hierarchical fixed point problems [ J ]. Inverse Problems, 2007, 23(4): 1635-1540.
  • 9Solodov M. An explicit descent method for bilevel convex optimization [ J ]. J Convex Anal, 2007, 14(2): 227-237.
  • 10Yao Y, Liou Y C. Weak and strong convergence of Krasnoselski-Mann iteration for hierarchi- cal fixed point problems[J]. Inverse Problems, 2008, 24( 1 ) : 15015-15022.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部