期刊文献+

基于GRG算法的火炮射击模拟系统冲击参数优化研究 被引量:2

Optimization Research on Impact Parameters of Gun Firing Simulator Based on GRG Algorithm
下载PDF
导出
摘要 炮口强冲击是一种技术可行的火炮动力后坐模拟试验方法。为保证该模拟试验方法精度,基于ADAMS软件建立了火炮虚拟射击试验环境,以冲击质量、冲击速度、缓冲器的线性刚度等为试验因素,以火炮后坐动态特性的最大相对误差为试验指标;通过灵敏度分析得到各因素对模拟试验精度的影响程度,并应用GRG算法进行了优化设计。为火炮射击模拟试验装置的设计研究打下了基础。 The muzzlestrong impactis a feasible test method to simulate the dynamic recoil of gun firing process. In order to assure the precision of this simulative experiment method, the virtual testing environment was developed based on MSC. ADAMS platform. Taking impact mass, impact velocity, linear stiffness of buffer etc. as experimental factors, while maximum relative error of firing dynamic response were regarded as experimental index, the influence degree of various factors on the precision of simulative experiment wasobtained by means of sensitivity analysis, and impact parameters were optimized based on GRG algorithm. The research can provide a reliable basis for the design of gun firing simulator.
出处 《火炮发射与控制学报》 北大核心 2011年第4期17-20,共4页 Journal of Gun Launch & Control
关键词 计算机应用 射击模拟 火炮 虚拟样机 灵敏度分析 GRG computer application firing simulation gun virtual prototype sensitivity analysis GRG
  • 相关文献

参考文献1

二级参考文献2

共引文献6

同被引文献28

  • 1肖启芝,许凯,关泽群,周春,秦昆.一种形态学滤波结构元的选择方法[J].计算机工程与应用,2007,43(21):49-51. 被引量:19
  • 2FRANCUS P. An image-analysis technique to measure grain-size variation in thin sections of soft elastic sedi- ments [ J ]. Sedimentary Geology, 1998,121 ( 3/4 ) : 289- 298.
  • 3WILSON W, MADISON J D, SPANOS G. Determining phase volume fraction in steels by electron backscattered diffraction[ J ]. Scripta Materialia, 2001,45 ( 12 ) : 1335- 1340.
  • 4CEREPI A, HUMBERT L, BURLOT R. Petrophysieal properties of porous medium from petrographic image a- nalysis data [ J]. Colloids and Surfaces A: Physicoehemi- eal and Engineering Aspects, 2001,187-188:233-256.
  • 5KAREN L S. Baekseattered electron imaging of eementi- tious microstructures: understanding and quantification [ J ]. Cement and Concrete Composites, 2004,26 ( 8 ) : 935-945.
  • 6MARTIN K. HEAD M K, BUENFELD N R. Measure- ment of aggregate interfaeial porosity in complex, multi- phase aggregate concrete: binary mask production using backscattered electron, and energy dispersive X-ray ima- ges [J]. Cement and Concrete Research, 2006,36(2) : 337 -345.
  • 7WONG H S, HEAD M K, BUENFELD N R. Pore seg- mentation of cement-based materials from backscattered electron images [ J ]. Cement and Concrete Research, 2006,36 (6) : 1083-1090.
  • 8MART[NEZ-MARTfNEZ J, BENAVENTE D, GARCIA DEL CURA M A. Petrographic quantification of breccia- ted rocks by image analysis: application to the interpreta- tion of elastic wave velocities [ J ]. Engineering Geology, 2007,90(1/2) :41-54.
  • 9FANDRICH R, YING G U, BURROWS D, MOELLER K. Modem SEM-based mineral liberation analysis [ J ]. International Journal of Mineral Processing, 2007,84 ( 1/ 2) :310-320.
  • 10KLAVER J, DESBOIS G, JANOS L, et al. BIB-SEM study of the pore space morphology in early mature Posi- donia Shale from the Hils area, Germany [ J ]. Interna- tional Journal of Coal Geology, 2012,103 : 12-25.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部