期刊文献+

基于主成分分析的单变量时间序列聚类方法 被引量:18

Univariate Time Series Clustering Method Based on Principal Component Analysis
下载PDF
导出
摘要 针对时间序列数据的高维特性,在进行理论分析的基础上,利用主成分分析法提出了一种单变量时间序列数据降维的新方法,进而提出了基于主成分分析的单变量时间序列聚类方法。其主要思想是在线性空间中的同一组基下,用系数之间的相似性来刻画对应时间序列之间相似性,在理论分析过程中,首先对单变量时间序列数据集进行主成分分析,其次分析了单变量时间序列数据集、样本协方差矩阵的特征向量与主成分之间的关系,并证明了由主成分构成的向量组线性无关。为了进一步验证理论分析结果的正确性和所提算法的有效性,分别利用仿真数据和真实的股票数据进行了数值实验。 For the high dimensionality of time series,based on theoretical analysis,a new method is proposed to reduce the dimension of univariate time series via principal component analysis,thus univariate time series clustering method based on principal component analysis is presented.The main idea is that,similarities among the univariate time series are reflected by similarities among the corresponding coefficients under the same basic vectors of linear space.In the process of theoretical analysis,we firstly do the principal component analysis on univariate time series data sets and then analyze the relationship among univariate time series,eigenvectors of sample covariance matrix and principal components.Moreover,we prove that the vectors composed of principal components are linear independent.In order to further verify the correctness of theoretical analysis results and the performance of the proposed algorithm,simulation data and real stock data are used to do the numerical experiments finally.
出处 《运筹与管理》 CSCD 北大核心 2011年第6期66-72,共7页 Operations Research and Management Science
基金 国家自然科学基金资助项目(10571018 70871015) 国家高技术研究发展计划(863计划)资助项目(2008AA04Z107)
关键词 多元统计分析 单变量时间序列 主成分分析 聚类分析 univariate time series principal component analysis cluster analysis
  • 相关文献

参考文献16

  • 1Liao T. Clustering of time series data-a survey [ J]. Pattern Recognition, 2005, 38 ( 11 ) : 1857-1874.
  • 2Jolliffe I. Principal component analysis( Second Edition)[ M ]. Berlin: Springer- Verlag, 2002.
  • 3Krzanowski W. Between- groups comparison of principal components[J]. Journal of American Statistical Association, 1979, 74 ( 367 ) : 703-707.
  • 4Johannesmeyer M, Seborg D. Abnormal situation analysis using pattern recognition techniques and historical data[ C]. AIChE Annual Meeting. Dallas, 1999.
  • 5Sighal A, Seborg D. Clustering multivariate time-series data[J]. Journal of Chemometrics, 2005, 19: 427-438.
  • 6Yang K, Shahabi C. A PCA-based similarity measure for multivariate time series[ C]. ACM International Workshop on Multi- media Databases, 2004. 65-74.
  • 7Shaw C, King G. Using cluster analysis to classify time series[J]. Physica D, 1992, 58: 288-298.
  • 8Korn F, Jagadish H, Faloutsos C. Efficiently supporting ad hoc queries in large datasets of time sequences[ C ]. ACM Special Interest Group on Management of Data. Tucson: ACM, 1997.
  • 9Zhong Y, Wang H, Lu G, et al.. Detecting functional connectivity in fMRI using PCA and regression analysis[ J]. Brain to- pography, 2009, 22(2) : 134-144.
  • 10Tsay R. Analysis of financial time series[ M ]. New Jersey: John Wiley & Sons, 2002.

二级参考文献19

  • 1陈玉山,席斌.独立成份分析方法在股票分析中的应用[J].计算机工程与设计,2007,28(6):1473-1476. 被引量:5
  • 2Dunham MH.数据挖掘教程[M].郭崇慧,田凤占,靳晓明译.北京:清华大学出版社,2005.
  • 3Han J, Kamber M. Data mining: concepts and techniques, second edition[ M ]. San Francisco: Morgan Kaufmann, 2006.
  • 4Keogh E, Kasetty S. On the need for time series data mining benchmarks: a survey and empirical demonstration[ J]. Data Mining and Knowledge Discovery, 2003, 7(4) : 349-371.
  • 5Liao T W. Clustering of time series data: a survey[ J]. Pattern Recognition, 2005, 38: 1857-1874.
  • 6Theodoridis S, Koutroumbas K. Pattern recognition[ M ]. Third Edition. New York: Academic Press, 2006.
  • 7Wilpon J G, Rabiner L R. Modified k-means clustering algorithm for use in isolated word recognition[ J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, 33(3): 587-594.
  • 8Shaw C T, King G P. Using cluster analysis to classify time series[J]. Physica D, 1992, 58: 288-298.
  • 9Goutte C, Toft P, Rostrup E. On clustering FMRI time series[J]. Neuroimage, 1999, 9(3) : 298-310.
  • 10Fu T-C, Chung F-L, Ng V, Luk R. Pattern discovery from stock time series using self-organizing maps[ A]. In: KDD 2001 Workshop on Temporal Data Mining[C], San Francisco, 2001, 27-37.

共引文献12

同被引文献211

引证文献18

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部