期刊文献+

脉冲调制射频功率测量中的标定及FFT分析方法研究 被引量:1

Studies on calibration method and FFT analysis in power measurement of pulse-modulated RF signal
下载PDF
导出
摘要 利用电压/电流探头和数字示波器实现了脉冲调制射频功率测量。电压/电流探头输出的电压、电流信号由数字示波器采集存储,电压、电流的幅值及相位差由FFT分析得到。在不同频率下,对电压、电流幅值及相位差进行标定,获得计算射频功率的标定参数。分析表明电压、电流相位差是影响标定系数的主要因素,FFT方法处理非稳态调幅电压、电流时存在问题,只有在零无功功率处才能获得可信的吸收功率。 The capability of a commercial-available voltage/current probe, intended to monitor steady or slowly-varying RF signals, is improved to measure pulse-modulated RF signals. The improvement is realized by means of combination of voltage/current probe sensor and a digital oscilloscope. The outputs of voltage/current probes are acquired with the digital oscilloscope, and their amplitudes and phase difference are obtained with FFT. Under different frequencies, current/voltage amplitude and phase difference are calibrated in order to calculate RF power. The phase difference between voltage and current is the key factor influencing calibration coefficients. Results show the calibrated current/voltage probe can provide reliable and repetitive measurements. FFT method is problematic in analyzing nonstationary amplitude-modulated voltage and current signals, and the pulsed RF power can be only reliably calculated at time when reactive power is zero.
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2011年第4期297-304,共8页 Nuclear Fusion and Plasma Physics
基金 国家自然科学基金资助项目(10835004)
关键词 脉冲射频功率测量 电压/电流探针 标定 非稳态FFT 相位差 Power measurement of pulsed RF signal Voltage/current probes Calibration Nonstationary FFT analysis Phase difference
  • 相关文献

参考文献10

  • 1Park F J, Henins I, Herrmann H W, et al. An atmospheric pressure plasma source [J]. Appl. Phys. Lett., 2000, 76: 288-290.
  • 2Balcon N, Aanesland A, Boswell R. Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon [J]. Plasma Sources Sci. Techn., 2007, 16:217 -225.
  • 3Ye R, Ishigaki T, Sakvta T. Controlled generation of pulse-modulated RF plasmas for materials processing [J]. Plasma Sources Sci. Techn., 2005, 14: 387-396.
  • 4Shi J J, Zhang J, Qiu G, et al. Modes in a pulse- modulated radio-frequency dielectric-barrier glow dis- charge [J]. Appl. Phys. Lett., 2008, 93: 041502.
  • 5Guo W, Jr C A D. Time-resolved current and voltage measurements on a pulsed rf inductively coupled plasma [J]. Plasma Sources Sci. Techn., 2001, 10:43-51.
  • 6Overzet L J, Leong-Rousey F Y. Time-resolved power and impedance measurements of pulsed radiofrequency discharges [J]. Plasma Sources Sci. Techn., 1995, 4:432 -443.
  • 7Paul M K, Chattopadhyay P K, Bora D. Electrostatic pickup rejection in low plasma current measurement [J]. Measurement Science and Technology, 2007, 18: 2673- 2680.
  • 8Coccoresea V, Artasersea G, Chitarinb G, et al. Manufacturing and commissioning of the new Ex-vessel magnetic diagnostics system for JET [J]. Fusion Engineering and Design, 2007, 82:1348-1358.
  • 9Hargis P J, Greenberg K E. The Gaseous Electronics Conference radio-frequency reference cell: A defined parallel-plate radio-frequency system for experimental and theoretical studies of plasma-processing discharges [J]. Rev. Sci. Instrum., 1994, 65 (1): 140-154.
  • 10Zhang J, Ding K, Wei K Y, et al. Excitation frequency dependent mode manipulation in radio-frequency atom- spheric argon glow discharges [J]. Physics of Plasma, 2009, 161 090702-1-4.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部