期刊文献+

自适应偏振模色散补偿中的新方法 被引量:1

A Method Used in Adaptive Polarization Mode Dispersion Compensation
原文传递
导出
摘要 提出了一种对传统粒子群(CPSO)算法进行优化的新型粒子群(GOPSO)算法.与CPSO算法相比,得到可以接受的结果时,GOPSO算法具有更高的收敛速度,需要更少的迭代次数,具有较小的概率陷入局部极值,且易于在实时应用中实现.实验中,已经将GOPSO算法作为高速光纤通信中偏振模色散自适应补偿系统的控制算法.实验数据表明,GOPSO算法的性能大大好于CPSO算法. A new hybrid particle swarm optimization (PSO) algorithm is presented. The algorithm is named as global best value optimized PSO (GOPS0) algorithm. Comparing with the conventional PSO (CPSO) algorithm, GOPS0 shows faster speed to converge to the global optima, less generation number needed to obtain an acceptable result, lower probability to lock into sub-optima, and easier implementation in the real-world applications. GOPSO has already been used as control algorithm to implement adaptive compensation system for polarization mode dispersion in high-speed optical fiber communication system. GOPSO shows much better performance than that of CPSO.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2011年第6期19-23,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家高技术研究发展计划项目(2009AA01Z224) 国家自然科学基金项目(60977049)
关键词 偏振模色散 自适应补偿与跟踪 粒子群优化算法 polarization mode dispersion adaptive compensation and tracking particle swarm optimization
  • 相关文献

参考文献11

  • 1Zhang X, Zheng Y, Shen Y, et al. Particle swarm opti- mization used as a control algorithm for adaptive PMD compensation[ J 1 ~ IEEE Photonics Technology Letters, 2005, 17(1) :85-87.
  • 2Eberhart R C, Shi Y. Particle swarm optimization: devel- opments, applications and resources[ J]. Proceedings of the 2001 Congress on Evolutionary Computation, 2001 ( 1 ) : 81-86.
  • 3Kennedy J, Eberhart R. Particle swarm optimization [ C ] // IEEE International Conference on Neural Netwroks. Perth: Is. n.J, 1995: 1942-1948.
  • 4Clerc M, Kennedy J. The particle swarm-explosion, sta- bility, and convergence in a multidimensional complex space[ J]. IEEE Transactions on Evolutionary Computa- tion, 2002, 6(1): 58-73.
  • 5Omran M, Salman A, Engelbrecht A P. Image classifica- tion using particle swarm optimization [ C ] //Proceedings of the dth Asia-Pacific Conference on Simulated Evolutionand Learning 2002 (SEAL 2002). Singapore: [ s. n. ], 2002 : 370-374.
  • 6Coello C A, Luna E H, Aguirre A H. Use of particle swarm optimization to design combinational logic circuits [J]. Lecture Notes in Computer Science (LNCS), 2003, 2606: 398-409.
  • 7Salerno J. Using the particle swarm optimization tech- nique to train a recurrent neural model[ C ]//IEEE Inter- national Conference on Tools with Artificial Intelligence. Newport Beach: [s.n. ], 1997: 45-49.
  • 8Kaewkamnerdpong B, Bentley P J. Perceptive particle swarm optimisation: an investigation[ J]. 2005 IEEE pro- ceedings of Swarm Intelligence Symposium ( SIS 2005 ) , 2005 : 169-176.
  • 9Chen J, Ren Z, Fan X. A hybrid optimized algorithm based on improved simplex method and particle swarm op- timization [ C ~ ff Control Conference, 2006 ( CCC 2006 ). Harbin: [ s. n. ] , 2006 : 1448-1453.
  • 10Ting T, Rao M, Loo C. A novel approach for unit com- mitment problem via an effective hybrid particle swarm optimization[ J]. IEEE Transactions on Power Systems, 2006, 21(1) : 411-418.

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部