期刊文献+

一种带有递减扰动项的粒子群优化算法 被引量:2

A particle swarm optimization algorithm with successively decreasing disturbance term
下载PDF
导出
摘要 针对粒子群优化算法在进化后期存在收敛速度慢、容易陷入局部极值等问题,提出一种带有递减扰动项的改进粒子群优化算法.当进化中后期粒子位置更新过慢或保持相对不变时,通过在粒子速度更新公式中加入递减扰动项,有效地提高微粒进行全局和局部搜索的能力,减小粒子陷入局部最优的可能.基于随机过程理论分析证明了粒子的运动规律是一种马尔科夫过程,且该方法以均方收敛到全局最优解.典型测试函数的仿真结果表明,该算法的收敛性与已有方法相比有较大提高,且算法能够有效避免粒子陷入局部极值. Aimed at the problems in particle swarm optimization (PSO) algorithm at the end of its evolution such as the slow convergence and the tendency to be trapped into local extremum, an improved algorithm was presented for particle swarm optimization with a successively decreasing disturbance term in the algorithm. In this algorithm, a successively decreasing disturbance term was added into the velocity upda- ting formula when the particle position updating was too slow or kept relatively unchanged in the middle and final evolution periods. Therefore the ability of global and local particle searching was effectively im- proved, and the probability of being trapped into local optimum was reduced. It was verified by theoretical analysis based on stochastic processes that the particle motion was of Markov process and, by using this algorithm, a global optimal solution could be achieved with mean square convergence. Experimental simulation showed that the improved algorithm could not only improve the convergence of the algorithm significantly compared with the algorithms available but also avoid trapping into local optimization solution.
出处 《兰州理工大学学报》 CAS 北大核心 2011年第6期88-93,共6页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(61064011) 国家博士后科学基金(20100470088)
关键词 粒子群优化算法 局部最优 随机过程 递减扰动项 收敛性 particle swarm optimization local optimum stochastic processes successively decreasingdisturbance term convergence
  • 相关文献

参考文献4

二级参考文献23

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2曾建潮,崔志华.微粒群算法的统一模型及分析[J].计算机研究与发展,2006,43(1):96-100. 被引量:25
  • 3[1]SHEHORY O,KRAUS S.Task allocation via coalition formation among autonomous agents[A].In O Shehory ed.Proc of IJCAI-95[C].Los Angeles,CA,USA,Morgan Kaufmann Publishers,1995.
  • 4[2]SANDHOLM T,LARSON K,ANDERSSON M,et al.Anytime coalition structure generation with worst case guarantees[A].In T Sandholm ed.Proc of the National Conference on Artificial Intelligence[C].Madison,WI,1998.
  • 5[3]SANDHOLM T,LESSER V.Coalition among computationally bounded agents[J].Artificial Intelligence,1997,94(1):99-137.
  • 6[9]SEN S,P DUTTA S.Searching for optimal coalition structures[A].In S Sen ed.Proc.of the 4th ICMAS[C].Boston,USA,2000.
  • 7[12]SEN S,DUTTA P S.Searching for optimal coalition structures[A].In:Proc the 4th ICMAS[C].Boston,MA,USA,2000.
  • 8[18]KENNEDY J,EBERHART R C.Particle swarm optimization[A].In Kennedy J ed.Proc IEEE Int Conf on Neural Networks[C].Perth,1995.
  • 9[19]EBERHART R C,KENNEDY J.A new optimizer using particle swarm theory[A].In Eberhart R C ed.Proc 6th International Symposium on Micro Machine and Human Science[C].Nagoya,1995.
  • 10Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of International Conference on Neural Networks. Perth, Australia: IEEE, 1995. 1942-1948

共引文献506

同被引文献20

  • 1高尚,杨静宇,吴小俊,刘同明.基于模拟退火算法思想的粒子群优化算法[J].计算机应用与软件,2005,22(1):103-104. 被引量:51
  • 2王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:86
  • 3张艳,李少远,王笑波,周坚刚.基于粒子群优化的Wiener模型辨识与实例研究[J].控制理论与应用,2006,23(6):991-995. 被引量:15
  • 4KENNEDYJ,EBERHARTRC.Particleswarmoptimization[C]//ProcofIntelligenceConferenceon NeuralNetworks.Piscataway:IEEEPress,1995:1942-1948.
  • 5SHIYuhui,EBERHARTRC.Empiricalstudyofparticleswarmoptimization[C]//ProcofIEEECongressonEvolutionaryComputation.Washington:IEEEPress,1999:1945-1950.
  • 6LIANG JJ,QIN A K,SUGANTHAN PN,etal.Comprehensivelearningparticleswarmoptimizerforglobaloptimizationofmultimodalfunctions[J].IEEETransonEvolutionaryComputation,2006,10(3):281-295.
  • 7PASSINOKM.Biomimicryofbacterialforagingfordistributedoptimizationandcontrol[J].IEEEControlSystemsMagazine,2002,22(3):52-67.
  • 8CHUANGLY,TSAISW,YANGCH.Catfishparticleswarmoptimization[C]//ProcofIEEESwarmIntelligenceSymposium.2008.
  • 9HATANAKAT,UOSAKIK,KOGA M.EvolutionarycomputationapproachtoWienermodelidentification[C]//ProcofIEEECongressonEvolutionaryComputation.2002.
  • 10李季,孙秀霞,李士波,李睿.基于遗传交叉因子的改进粒子群优化算法[J].计算机工程,2008,34(2):181-183. 被引量:34

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部