期刊文献+

修正协方差阵的投资组合方案及其稳定性 被引量:4

Optimal portfolio project with modified covariance matrix and its stability
下载PDF
导出
摘要 分析了最优化投资组合不稳定的原因,在此基础上,推广了由前人提出的一个新方法,即根据随机矩阵定理(RMT)对样本协差阵进行变化以得到一个更好的投资方案.首先对该方法中未证明的部分给出了更充分的实证理由,并运用这种思想,结合中国证券市场的实际数据,来模拟"真实的投资".而这种方法得到的投资方案,较之传统方法有较好的收益率和方差,且可被前人对风险预测的分析方法所解释. The reasons why the risk of optimal portfolio is unstable was analyzed.Based on this analysis a new method was tried,which was proposed by the previous researchers,to dispose the sample covariance matrix based on random matrix theory(RMT),to get a better result.Generally,we first give more sufficient and practical evidence to support the method’s reasonableness and power,then apply this idea to simulate the"real investment",using real data of the Chinese stock market.It is found that the results have better mean return and stability than those of the traditional method,and can be explained by the analysis of the prediction to the risk proposed by the previous researchers.
作者 储晨 方兆本
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2011年第12期1035-1041,共7页 JUSTC
关键词 投资组合 稳定性 协方差阵 随机矩阵定理 portfolio stability covariance matrix random matrix theory
  • 相关文献

参考文献19

  • 1Markowitz H. Portfolio Selection: Efficient Diversification of Investment[M]. New York: Wiley,1959.
  • 2Elton E J, Gruber M J. Modern Portfolio Theory and Investment Analysis[M]. New York: Wiley, 1995.
  • 3Jobson J D, Korkie B. Estimation for Markowitz efficient portfolios [J]. Journal of the American Statistical Association, 1980,75(371) :544-554.
  • 4Jorion P. Bayes-Stein Estimation for portfolio analysis [J]. The Journal of Financial and Quantitative Analysis, 1986,21(3) : 279-292.
  • 5Laloux L, Cizeau P, Bouchaud J P, et al. Noise dressing of financial correlation matrices[J]. Physical Review Letters, 1999, 83(7)..1 467-1 470.
  • 6Plerou V, Gopikrishnan P, Amaral L N, et al. Random matrix approach to cross correlations in financial data [J]. Physical Review E, 2002, 65: 066126.
  • 7Bohigas O, Giannoni M J. Mathematical and Computational Methods in Nuclear Physics [ M]. Berlin.. Springer-Verlag, 1983.
  • 8Metha M. Random Matrices [M]. New York: Academic Press, 1995.
  • 9Bai Z D. Methodologies in spectral analysis of large dimensional random matrices, a review[J]. Statistica Sinica,1999, 9: 611-677.
  • 10Bai Zhidong, Fang Zhaoben, Liang Yingchang. Spectral Theory of Large Dimensional Random Matrices and Its Applications to Wireless Communications and Finance Statistics [M]. Hefei: University of Science and Technology of China Press, 2009.

同被引文献49

  • 1陈娟,沈晓栋.中国股票市场收益率与波动性的阶段性研究[J].统计与决策,2005,21(04X):98-100. 被引量:10
  • 2刘庆富,仲伟俊,梅姝娥.基于VaR-GARCH模型族的我国期铜市场风险度量研究[J].系统工程学报,2006,21(4):429-433. 被引量:36
  • 3Markowitz H M. Portfolio selection[J]. Finance, 1952, 7(1), 77-9l.
  • 4Markowitz H M. Portfolio Selection, Efficient Diversification of Investment[MJ. New York: Wiley, 1959.
  • 5Ledoit P, Wolf M. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection[J].Journal of Empirical Finance, 2003, 10: 603-621.
  • 6HuangJ Z, Liu N, Pourahmadi M, et al. Covariance matrix selection and estimation via penalized normal likelihood[J]. Biometika , 2006, 93(1) :85-98.
  • 7Lai T L, Xing H, Chen Z. Mean-variance portfolio optimization when means and covariances are unknown[J]. Annals of Applied Statistics, 2011, 5: 798-823.
  • 8Lai T L, Xing H. Statistical Models and Methods for Financial Markets[M]' New York: Springer, 2008.
  • 9Michaud R O. Efficient Asset Management[MJ. Boston, MA: Harvard Business School Press, 1998.
  • 10Demiguel V, Garlappi L, Uppal R. Optimal versus naive diversification: How inefficient is the l/N portfolio strategy?[J]. The view of Finance Study, 2009,22(5): 1 915-1 953.

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部