期刊文献+

面向多类学习问题的核最近表面分类方法 被引量:2

Kernel Nearest Surface Classification Methods for Multi-class Learning Problems
下载PDF
导出
摘要 虽然最邻近决策规则能很好地解决数据集的非线性和非平衡性问题,但其没有学习过程.在此基础上,提出了一种利用聚类方法来浓缩训练样本,再根据最近邻准则进行决策的方法——核最近表面分类方法.通过实验将其与几种常用的统计分类方法进行对比,结果表明,核最近表面分类方法具有决策速度快、存储空间需求小等优点,同时也能够很好地处理非平衡数据集的分类问题. The nearest neighbor decision rules have a good classification on nonlinear and imbalanced data sets, but have no learning process. A method called as kernel nearest surface classifier is proposed to condense the training samples with clustering, and then make decision using the nearest neighhor rule. The method is compared with such as common-used statistical classification methods through the experiments. The results show that the proposed method has many merits, such as fast decision speed and small memory space requirement, and can also solve the classification problem of the imbalance data set effectively.
作者 殷士勇
出处 《宁夏大学学报(自然科学版)》 CAS 北大核心 2011年第4期341-345,共5页 Journal of Ningxia University(Natural Science Edition)
基金 江苏省自然科学基金资助项目(BK2010277)
关键词 核最近表面分类 机器学习 近邻法 聚类 kernel nearest surface classification method machine learning nearest neighbor rule clustering
  • 相关文献

参考文献15

二级参考文献153

共引文献85

同被引文献22

  • 1沈徐辉,罗小平.基于模糊的改进KPCA方法[C]//Proceedings of the 29th Chinese Control Conference.Beijing:2010(7):29-31.
  • 2程鹏.矩阵论[M].西安:西北工业大学出版社,1989.
  • 3Bezdek J. Pattern Recognition with Fuzzy Objective Func-tion Algorithms[M], New York: Plenum Press, 198].
  • 4Pal N R,Bezdek J C. On Cluster Validity for the Fuzzy C-mean model [J]. IEEE Trans on Fuzzy Systems, 1995,3(3):370-379.
  • 5Blake C,Keogh E,Merz C J. UCI repository of machinelearning databases [EB/OL]. http://www. ics. uci. edu/.mlearn /MLRepository. htm.
  • 6Liu Bing, Ma Yiming, Wong Chingkian. Improving an association rule based classifier [C]//Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery. Lyon, 2000: 504- 509.
  • 7Chawla N V, Bowyer K W, Hall L O, et al. MOTE.- Synthetic minority over-sampling technique[ J]. Jour- nal of Artificial Intelligence Research, 2002, 16 (1): 321-357.
  • 8Cieslak D A, Chawla N V. Learning decision trees forunbalanced data [C]//Proceedings of the European Conference on Machine Learning and Knowledge Dis- covery in Databases. Antwerp, Belgium, 2008: 241- 256.
  • 9Tang Y, Zhang Y Q, Chawla N V, et al. SVMs mod- eling for highly imbalanced classification [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B.. Cybernetics, 2009,39(1):281-288.
  • 10Bezdek J. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部