期刊文献+

一类具饱和传染率和两阶段结构的传染病模型

An Autonomous SIS Epidemic Model with Two Stage-Structure And Pulse Vaccination
下载PDF
导出
摘要 对一类具饱和传染率和阶段结构传染病模型进行了分析,得到了传染病最终消除和成为地方病的阈值,当它小于1时,无病平衡点是全局渐近稳定的,此时疾病消除;当它大于1时,地方病平衡点是局部渐近稳定的,此时传染病成为地方病。 A SIS Epidemic model with saturation incidence and two stage-structure is discussed. The threshold is obtained.If the threshold less than one, sufficient conditions for global asymptotic stability of the infection-free equilibrium is obtained, otherwise the endemic equilibrium is local asymptotic stability and permanence.
出处 《软件》 2011年第10期20-23,共4页 Software
基金 武警部队自然科学基金资助课题(WKH2008-09)
关键词 传染病模型 饱和传染率 阶段结构 全局渐近稳定局部渐近稳定 Epidemic model Saturation Stage-structure Global asymptotic stability Threshold
  • 相关文献

参考文献6

  • 1Walter G,Alello,Freedman H I. A time-delay of sin- gle species growth with stage structure[J].Mathematical Bflscience, 1990, i01 : 139-153.
  • 2Walter G,Alello,Freedman H I.Wu J.Analysis of a model representing stage-structured populations growth with stage-dependent time delay[J].SIAM J APP1 Math, 1992,52(3) .. 855-869.
  • 3郑丽丽,王豪,方勤华.一类具有非线性传染力的阶段结构SI模型[J].数学的实践与认识,2004,34(8):128-135. 被引量:7
  • 4曹瑾,武佳,唐蕾,张双德.具脉冲两阶段结构的自治SIS传染病模型[J].大学数学,2011,27(5):62-68. 被引量:5
  • 5Y.Kuang,Delay Differential Equations With Applications in Population Dynamics, Academic Press, New York. 1993.
  • 6X.Song,L.Chen,Optimal harvesting and stability for a two species competitive system with stage-structure ,Math. Biosci. 170(2001)173-185.

二级参考文献14

  • 1Sabin A B. Measles, killer of millions in developing countries: Strategies of elimination and continuation control[J]. Eur J Epidemiol, 1991, 7: 1-22.
  • 2Nokes D, Swinton J. The control of childhood viral infections by pulse vaccination[J]. IMA J, Math Appl Biol Med, 1995, 12: 29-53.
  • 3Agur Z L, et al. Pulse mass measles vaccination across age cohorts[J]. Proc NatlAcad Sci, USA, 1993, 90:11698-11702.
  • 4Agur Z L, Deneubourg J L. The effect of environmental disturbance on the dynamics of marine intertidal populations[J]. Theor Pop Biol, 1985, 27: 75-90.
  • 5Shulgin B, et al. Pulse vaccination strategy in the SIR epidemic model[J]. Bulletin of Math Bio, 1998, 60: 1-26.
  • 6Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulses[J]. Math Biosci,1998, 149: 23.
  • 7Anderson R M. The Population Dynamics of Infectious Disease; Theory and applications, Chapman and Hall[M].London, 1982.
  • 8Gorbach S L, Bartlett J G, Blacklow N R. Infectious Disease[M]. Philadephia: Saunders, 1998.
  • 9Shulman S T et. The Biologic and Clinical Basis of Infectious Deseases[M]. Philadephia: Saunders, 1997.
  • 10Walter G Alello, Freedman H I. A time-delay model of single species growth with stage structure[J].Mathematical Bioscience, 1990, 101: 139-153.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部