期刊文献+

基于INA设计方法的多变量PID控制器设计方法的深入研究

The Further Discussion for the Design Method for Multivariable PID Controller Based on Inverse Nyquist Array Method
下载PDF
导出
摘要 基于增大求解方法选择性的目的,本文给出了一种从系统开环传递函数入手求解极限增益和极限频率的计算方法,并以TITO系统为例,给出了详细的推导过程;此外,在详细研究设计方法的基础上,本文以两个典型对象作为研究对象对设置点位置与逆Nyquist阵列(INA)设计方法的多变量PID控制器设计方法的设计性能之间的规律性进行了系列仿真实验研究,并得出:系统开环传递函数矩阵的逆的行Gershgorin带与负实轴的交点(离原点最近的交点)与点(-1,j0)之间的距离越远,系统闭环响应曲线的震荡性越弱,系统的稳定裕量越大。 A new algorithm for ultimate gain and ultimate frequency, calculating from system open-loop transfer function initally, is presented aiming at increasing choice, and the datailed derivation is introduced taking TITO system as example .In addition, taking two typical objects as research objects, this paper gives the further discussion for the design method of the multivariable PID controller based on Inverse Nyquist Array method by simulation experiments, which is the regularity between the position of setpoint and its design perfor- mance, based on detailed study of design method, and draws conclusion as follow: more far the distance between the intersection of the raw Gershgorin band of the inverse matrix of system open-loop transfer function and negative real axis (the nearest point away from origin) and point (-1,j0), more weak the concussion of closed-loop response curve, and more big the stability margin of system.
出处 《软件》 2011年第11期20-24,共5页 Software
关键词 极限点 极限增益 极限频率 稳定裕度 多变量PID控制 ultimate point ultimate gain ultimate frequency stability margin multivariable PID control
  • 相关文献

参考文献12

  • 1王诗宓.多变量控制系统的分析和设计[M].北京:中国电力出版社,1996..
  • 2D Chen,D E Seborg.Multiloop PI/PID controller design based on Gershgorin bands[J].IEE Proc-Control Theory Appl, 2002,149(1):68-73.
  • 3吴国垣,李东海,薛亚丽,唐多元.多变量系统分散PID控制器设计[J].清华大学学报(自然科学版),2004,44(11):1567-1570. 被引量:4
  • 4Weng Khuen Ho,Tong Heng Lee,Wen Xu et al.The direct nyquist array design of PID controllers[J].IEEE Transaction on Industrial Electronics, 2000,47(1 ): 175-185.
  • 5Dailing Gao,Lin Zhang.The robust inverse nyquist array (RINA) method for the design of multivariable control system[C]. Proceedings of 1993 IEEE Region 10 Conference on Computer, Communication, Control and Power Engineering. Beijing, China:IEEE, 1993. 234-237.
  • 6Neil Munro.Recent extensions to the inverse nyquist array design method [C]. Proceedings of the IEEE Conference on Decision and Control Including The Symposium on Adaptive Processes 24th.New York, USA:IEEE, 1985. 1852-1857.
  • 7Weng K Ho, Tong H Lee, Oon P Gan. Tuning of multi- Loop Proportional-Integral- Derivative contr011erg based on gain and phase margin specifications[J]. Industrial and Engineering Chemistry Research, 1997,36(6): 2231-2238.
  • 8吴晓威,张井岗,赵志诚.多变量系统的PID控制器设计[J].信息与控制,2008,37(3):316-321. 被引量:9
  • 9Luc i ola Campestrini,Luiz Carlos Stevanatto Filho, Alexandre Sanfelice Bazanella.Tuning of multivariable decentralized controllers through the ultimate-point method[J].IEEE Transactions Control System Technology, 2009,17(6): 1270-1281.
  • 10崔连杰,曹鸣,宋建锋,张敏,李俊宁.基于INA设计方法的多变量PID控制器设计方法[J].软件,2011,32(5):85-92. 被引量:2

二级参考文献38

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部