期刊文献+

基于三角域快速行进法的地震波走时计算 被引量:2

Seismic Travel-time Computation Using Triangulated Fast Marching Method
下载PDF
导出
摘要 地震波走时计算是地震资料解释处理技术的重要组成部分,本文根据复杂地层构造中速度场分布的特点,设计了一种采用快速行进法基于三角网格的走时计算方法,针对计算效率优化和快速行进法在三角域上的计算格式进行了重点的研究,并根据地层限定条件对速度场进行网格剖分,在三角网格上用快速行进算法计算各点走时。与基于矩形网格的差分方法相比,该方法不需要对速度场边界进行任何平滑,无须通过细分网格来提高计算精度;可根据不同地质构造的复杂度进行变网格大小的剖分,网格剖分数目相对较少。最后通过计算实例进行了验证。 Travel-time computation is an important technique of seismic data process. According to the traits of complex velocity model, we present a travel-time computation using triangulated fast marching method. First, we get a triangulated mesh using 2d con- strained triangulation. Then the triangulated fast marching method is introduced to compute travel-time. Compared to other finite difference wavefront computation method based on rectangle cell parameteration, this method based on triangle cell parameteration doesn't need any flatness on the interface of velocity model to improve the precision. It presents the complex velocity model with less cells through control the size of triangle on different part. The results of computation on Marmousi model demonstrate correctness of the proposed methods.
出处 《软件》 2011年第11期36-39,42,共5页 Software
基金 航空科学基金项目(编号:20091451017) 中央高校基本科研业务费专项资金资助(编号:YWF-10-02-057)
关键词 算法 走时 DELAUNAY 三角化 快速行进法 程函方程 Algorithm Travel-time Delaunay triangulation fast marching method Eikonal equation seismic-wave propagation
  • 相关文献

参考文献10

  • 1渥·伊尔马滋.地震资料分析[M].北京:石油工业出版社,2006.
  • 2Vidale J. FInite-differendce calcaulation of traveltimes[J]. Bull Seism Soc Am, 1988,78(6):2062-2076.
  • 3Trier J Van, Symes W W.Upwind finite-difference calculation of traveltimes[J]. Geophysics, 1991, 56(6): 812-821.
  • 4Asakawa E,Kawanaka T. Seismic ray tracing using linear traveltime interpolation[J].Geophysical Prospecting, 1993, 41(1): 99-111.
  • 5王华忠,方正茂,匡斌,马在田.任意介质中的动态规划法地震波三维走时计算[J].地球物理学报,2001,44(z1):179-189. 被引量:7
  • 6高亮,李幼铭,陈旭荣,杨孔庆.地震射线辛几何算法初探[J].地球物理学报,2000,43(3):402-410. 被引量:43
  • 7J. A. Sethian. Level Set Methods and Fast Marching Methods[M]. 2nd edition. USA: Cambridge University Press, 1999.
  • 8Sethian J A, Popovici A M. 3-D traveltime computation using the fast marching method[J]. Geophysics, 1999,64(2), 516-523.
  • 9徐永安,谭建荣,杨钦,陈其明.二维任意域约束Delaunay三角化的实现[J].工程图学学报,1999,20(1):51-55. 被引量:10
  • 10杨钦,刘瑞刚,孟宪海,张俊安.二维复杂限定Delaunay三角化算法[J].计算机辅助设计与图形学学报,2007,19(2):145-150. 被引量:8

二级参考文献25

  • 1周晓云,刘慎权.实现约束Delaunay三角剖分的健壮算法[J].计算机学报,1996,19(8):615-624. 被引量:54
  • 2孟宪海,李吉刚,杨钦.带权优化约束Delaunay三角化算法[J].北京航空航天大学学报,2005,31(12):1284-1288. 被引量:7
  • 3[1]Schneider W A Jr.,et al.A dynamic programming approach to first-arrival traveltime computation in media with arbitrarily distriouted velocities.Geophysics,1992,57: 39-50.
  • 4[2]Vidale J E.Finite-difference traveltime calculation.Bull.,Seis.Soc.Am.,1988,78: 2062-2076.
  • 5[3]Vidale J E.Finite-difference calculation of traveltimes in three dimensions.Geophysics,1990,55: 521-526.
  • 6[4]Podvin P,Lecomte I.Finite-difference computation of traveltimes in very contrasted velocity models: A massively parallel approach and its associated tools.Geophys.J.Int.,1991,105: 271-284.
  • 7[5]Schneider W A Jr.Robust and efficient upwind finite-difference traveltime calculations in three dimensions.Geophysics,1995,60: 1108-1117.
  • 8[6]van Trier J,Symes W W.Upwind finite-difference calculation of traveltimes.Geophysics,1991,56: 812-821.
  • 9[7]Jervis M,Ser V,Porsani M J.Robust and efficient 3D traveltime calculations in arbitrary media.65th Ann.Internat.Mtg.,Soc.Expl.Geophys.,1995,1402-1405.
  • 10[8]Langan R T,Lerche I,Cutler R T.Tracing of rays through heterogeneous media: An accurate and efficient procedure.Geophysics,1985,50: 1456-1465.

共引文献80

同被引文献32

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部