期刊文献+

贝叶斯分类器在图像检索中的相关应用

The Relevant Applications of Bayesian Classifier in Image Retrieval
下载PDF
导出
摘要 由于图像底层特征及其本身所包含的上层语义信息的巨大差距,使得基于内容的图像检索很难取得令人满意的结果。为了提高检索正确度,人们提取了相关反馈技术并取得了一定的成功。贝叶斯分类器是一个简单有效的分类器,将其与相关反馈技术相结合应用于图像检索,可以利用用户提供的交互信息来实现对贝叶斯分类器相关参数的更新,从而提高了系统的检索能力。 As the image itself, the underlying characteristics and semantic information contained in the huge gap between the upper, making content-based image retrieval is difficult to obtain satisfactory results. In order to improve retrieval accuracy, people extracts the relevance feedback and have achieved some success. Bayesian classifier is a simple and effective classifier, its combination with relevance feedback in image retrieval, users can take advantage of the interactive information to achieve the relevant parameters of the Bayesian classifier updates to improve the system search capabilities.
作者 陆创旭
机构地区 潮州广播电视台
出处 《软件》 2011年第11期71-72,92,共3页 Software
关键词 贝叶斯分类器 图像检索 相关反馈 更新参数 Bayesian Classifier Image Retrieval Relevance Feedback Update Parameters
  • 相关文献

参考文献6

  • 1Rui, Y., Huang, T. S. Relevance feedback:a power tool for interactive content - based image retrieval. IEEE Circuits and Systems for Video Technology,1999,8(5):644-655.
  • 2Rui, Y., Huang, T. S. A novel relevance feedback technique in image retrieval. In:Buford, J., ed. Proceed- ings of the 7th ACM International Conference(part 2) on Multimedia(Part 2). New York, NY:ACM Press,1999: 67- 70.
  • 3苏中,张宏江,马少平.基于贝叶斯分类器的图像检索相关反馈算法[J].软件学报,2002,13(10):2001-2006. 被引量:21
  • 4邓宝松,吴玲达.基于内容的图像检索及其相关反馈问题[J].计算机科学,2002,29(z1):240-241. 被引量:1
  • 5边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..
  • 6曹莉华,刘丽英.多媒体数据库查询中的相关反馈问题研究[C].全国第七届多媒体技术学术会议论文集,1998:300-303.

二级参考文献14

  • 1[12]吴玲达,老松杨,王辰,谢毓湘,陈剑斌.多媒体信息系统.北京:电子工业出版社,2002
  • 2[4]Su Zhong,Zhang Hong-jiang,Ma Shaoping. Using Bayesian Classifier in Relevant Feedback of Image Retrieval. 12th IEEE Intla.Conf. on Tools with Artificial Intelligence (ICTAI 2000), Vancouver Canada, Nov. 2000
  • 3[5]Vasconcelos N , Lippman A. Learning from user feedback in image retrieval systems. NIPS'99, Denver, Colorado, 1999. (http://WWW. media. mit. edu/people/nuno/publications. html )
  • 4[6]Rui Y,Huang T S. Relevance Feedback: A Power Tool for Interactive Content-Based Image Retrieval. IEEE Circuits and systems for Video technology, 1999,8 (5)
  • 5[7]Rui Y,Huang T S,Mehrotra S. Content-based Image Retrieval with Relevance Feedback in MARS. In: Proc. of IEEE Int.Conf. on Image Processing (ICIP'97), Santa Barbara, California, Oct. 1997.26~29
  • 6Aalbersberg, I.J. Incremental relevance feedback. In: Belkin, N.J., ed. Pr oceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information retrieval. Copenhagen: ACM Press, 1992. 11~22.
  • 7Harman, D. Relevance feedback revisited. In: Belkin, N.J., ed. Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Developme nt in Information Retrieval. Copenhagen: ACM Press, 1992. 1~10.
  • 8Cox, I.J., Minka, T.P., Papathomas, T.V., et al. The Bayesian image retrie val system, PicHunter: theory, implementation, and psychophysical experiments. I EEE Transactions on Image Processing, 2000,9(1):20~37.
  • 9Rui, Y., Huang, T.S. Relevance feedback: a power tool for interactive cont ent-based image retrieval. IEEE Circuits and Systems for Video Technology, 1999, 8(5):644~655.
  • 10Vasconcelos, N., Lippman, A. Learning from user feedback in image retrieva l systems. In: Proceedings of the NIPS'99. 1999. http://www.media.mit.edu/people /nuno/publications.html.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部