摘要
为了解决Robin边值条件下一类脉冲向量时滞双曲型微分方程解的振动性问题,通过对向量微分不等式解的讨论,采取Domslak引进的H-振动的概念以及内积降维的方法,将多维振动问题化为一维微分不等式的不存在最终正解问题,研究得出这类方程在Robin边值条件下的振动性判据。
The oscillations of a class of impulsive vector hyperbolic partial differential equations with delays are investigated in this study.Based on the discussion on the solution of vector differential,the multi-dimensional oscillation problems are transformed into the problems of one-dimensional impulsive delay differential inequalities,which do not have eventual positive solution,using the concept of H-oscillation introduced by Domslak and the method of reducing dimension with scalar product.Some sufficient criteria for H-oscillation of all solutions of the equations are obtained under Robin boundary value condition.
出处
《辽宁工程技术大学学报(自然科学版)》
CAS
北大核心
2011年第6期951-954,共4页
Journal of Liaoning Technical University (Natural Science)
基金
辽宁省教育厅基金资助项目(2008F5005)
关键词
脉冲
时滞
双曲
微分方程
边值问题
内积
不等式
H-振动性
impulse
delay
hyperbolic
differential equation
boundary value problem
inner product
inequality
H-oscillation