期刊文献+

基于神经网络规则抽取的个人信用评估模型研究

Study on individual credit assessment model based on Rules Extraction from Trained Neural Networks
下载PDF
导出
摘要 本文针对传统个人信用评估体系中的不足,提出了一种基于神经网络规则抽取的个人信用评估模型。通过对已经训练好的人工神经网络隐层激活值进行聚类分析,减少搜索空间,进而抽取出理解性好、简洁的符号规则。从而产生一组可理解的描述,这组描述能最大限度的模拟已经训练好的原神经网络的推理预测行为。使得评价中的人为因素得到弱化,克服了神经网络在个人信用评估中的"黑箱"性缺陷,增强了模型的稳健性和可理解性。 This paper proposes an individual credit assessment model based on rules extraction from trained neural networks according to the defects of individual credit assessment system. Clustering analysis by artificial neural network that has been trained can reduce the searching scale and extract succinct sign rules ot' good understanding. Therefore a group of descriptions comes into being, that can be understood and simulate reasoning predict behaviors o f original neural network well trained in a maximum extent. That weakens the human factors in evaluation, and overcomes neural network's defects of "black box" in individual credit assessment to enhance the robustness and intelligibility of the model.
作者 马宁 廖慧惠
出处 《软件》 2011年第12期53-54,87,共3页 Software
基金 安徽广播电视大学青年基金资助项目(项目号qn11-20)
关键词 个人信用评估 神经网络 规则抽取 individual credit assessment neural network rules extraction
  • 相关文献

参考文献3

二级参考文献27

  • 1楼顺天 施阳.基于MATLAB的系统分析与设计-神经网络[M].西安电子科技大学出版社,1999..
  • 2Thomas L C. A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers [J]. International Journal of Forecasting, 2000, 16: 149-172.
  • 3Odom M D, Sharda R. A neural network model for bankruptcy prediction[C]//IEEE International Joint Conference on Neural Networks. San Diego, CA, Morgan Kaufmann, 1990, 2:163-168.
  • 4Tam K, Kiang M. Managerial applications of the neural network: the case of bank failure predictions [J]. Management Science, 1992, 38: 416-430.
  • 5West D. Neural network credit scoring models[J]. Computers & Operations Research, 2000, 27: 1131- 1152.
  • 6Chi L C, Tang T C. Artificial neural networks in reorganization outcome and investment of distressed firms: The Taiwan Residents case[J]. Expert Systems with Applications, 2005, 29(3): 641-652.
  • 7Pendharkar P C. A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem[J]. Computers & Operations Research, 2005, 32(10:2561-2582.
  • 8Huang Y M, Hung C M, Jiau H C. Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem[J]. Nonlinear Analysis: Real World Applications, 2006, 7(4) :720-747.
  • 9Abdou H, John P, Ahmed E M. Neural nets versus conventional techniques in credit scoring in Egyptian banking [J]. Expert Systems with Applications, 2008, 35(3): 1275-1292.
  • 10Eliana A, Giacomo T, Andrea R. A neural network approach for credit risk evaluation[J]. The Quarterly Review of Economics and Finance, 2008, 48 (4): 733-755.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部