期刊文献+

一种改进的ISOMAP算法在图像检索中的应用

An Improved Kernel ISOMAP Algorithm with Application to Image Retrieval
下载PDF
导出
摘要 传统的核化ISOMAP(K-ISOMAP)算法对于多个分散类簇数据集的低维映射不能较好地表现数据集的内在拓扑结构。针对此缺点,本文将对基于ISOMAP的多类多流形算法(MCMM-ISOMAP)进行核化,提出核化的多类多流形ISOMAP算法(K-MCMM-ISOMAP),该算法不仅使得多类数据集在降维后保持较好的内在拓扑结构,而且具备了K-ISOMAP算法的泛化能力,可以将测试数据直接映射到低维空间。因此,该算法可以在多类图像数据集中实现图像检索的功能。实验结果表明该算法与K-ISOMAP相比更具有效性。 The conventional kernel ISOMAP algorithm (K--ISOMAP) can not work well in keeping the intrinsic topology of datasets from multi--class clusters datasets in the low--dimensional space. In order to avoid this shortcoming, a novel algorithm named kernel multi--c/ass multi--manifold ISOMAP (K-- MCMM--ISOMAP) is proposed in this paper, which is the kernel version of MCMM--ISOMAP. The new algorithm doesn't only keep the intrinsic topology of datasets in low--dimensional mapping space, but also has the generalization of K--ISOMAP. It can directly map the test data to low--dimensional space. Therefore it can be applied to the image retrieval system consisting of multi--class image dataset. The experimental results show that the new algorithm is more effective than the K--ISOMAP.
出处 《常州大学学报(自然科学版)》 CAS 2011年第4期41-44,共4页 Journal of Changzhou University:Natural Science Edition
基金 国家自然科学基金项目(61070121 60973094) 江苏省自然科学基金项目(BK2009538) 江苏省产学研前瞻性联合研究项目(BY2009117)
关键词 非线性降维 核等距特征映射 多类多流形等距特征映射 图像检索 nonlinear dimensionality kernel ISOMAP multi-- class multi-- manifold ISOMAP image retrieval
  • 相关文献

参考文献1

二级参考文献8

  • 1Tenenbaum J B, Silva de V, Langford JC. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000,290(5500) : 2319- 2323.
  • 2Roweis S T, Saul LK. Nonlinear dimensionality reduction by kr.ally linear embedding [ J ]. Science, 2000, 290 (5500) : 2323 - 2326.
  • 3Balasubrarnanian M, Schwartz EL. The ISOMAP algorithm and topological stability[J]. Science, 2002, 295 (5552) :7.
  • 4Geng X, Zhan D C, Zhou Z H. Supervised nonlinear dimensionality reduction for visualization and classification [J]. IEEE Trans. on Systems, Man and Cybernetics, 2005,35(6) : 1098 - 1107.
  • 5Bernstein M, Silva de V, Langford JC, et al. Graph approximations to geodesics on embedded manifolds [ R]. Stanford University, 2000.
  • 6Donoho D, Grimes C. Hessian eigenmaps: new locally linear embedding techniques for high- dimensional data[J]. Nat' l Acadeany of Sciences, 2003,100(10) : 5591 - 5596.
  • 7Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J ]. Neural Computation, 2003,15(6) : 1373 - 1396.
  • 8Zhang Z,Zha H. Principal manifolds and nonlinear dimension reduction via local tangent space alignment[J ]. Journal of Scientific Computing, 2005,26 ( 1 ) : 313 - 338.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部