期刊文献+

CP-nets的代数表示及其模型求取算法 被引量:2

Algebraic Representation and Model Solving Algorithm for CP-nets
原文传递
导出
摘要 条件偏好网(CP-nets)是一种表示定性条件偏好关系的语言.针对目前CP-nets的图形表示方法难以实现运算的特点提出一种二值无环CP-nets的代数表示方法.该方法将CP-nets组织成邻接链表的形式,纵向存储CP-nets拓扑排序的序列,其结点域以命题逻辑的主析取范式来表示二值CP-nets的条件偏好表.横向存储各个顶点的父亲集,它对应决策属性的条件集.随后基于CP-nets的代数表示方法,研究二值无环CP-nets上的直接模型和间接模型的求取算法.实验结果表明,CP-nets不仅能用直观的图形来表示,也可用紧凑的代数方法来表示. Conditional preference networks (CP-nets)is a popular language which represents qualitative conditional preference relation. Aiming at the problem that graphical representation is not enough to fulfill operations on CP-nets, an algebraic representation of CP-nets is offered with the well-known adjacent list approach. In the approach, vertical nodes are organized organized by topological order, and horizontal nodes are by their parents. Particularly, conditional preference table of nodes are represented by main disjunctive normal form of proposition logic. A direct model solving algorithm is devised later, and an indirect model solving algorithm is gotten based on relation operation on direct model. In short, the representation approach reveals that CP-nets can be not only represented by simple and intuitive graphical approach, but also represented by compacted algebraic approach.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第6期725-732,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.61070118 60970105)
关键词 二值无环条件偏好网 邻接链表 主析取范式 直接和间接模型 紧凑的代数方法 Binary-Valued Acyclic Conditional Normal Form, Direct and Indirect Preference Networks, Adjacency List, Main Disjunctive Model, Compacted Algebraic Approach.
  • 相关文献

参考文献14

  • 1Brafman R, Domshlak C. Preference Handling - An Introductory Tutorial. AI Magazine, 2009, 30( 1 ) : 58 -86.
  • 2Boutilier C, Brafman R, Domshlak C, et al. CP-Nets: A Tool forRepresenting and Reasoning with Conditional Ceteris Paribus Prefer- ence Statements. Journal of Artificial Intelligence Research, 2004, 21:135-191.
  • 3Koriche F, Zanuttini B. Learning Conditional Preference Networks with Queries//Proc of the 21st International Joint Conference on Artificial Intelligence. Pasadena, USA, 2009 : 1930 - 1955.
  • 4Koriche F, Zanuttini B. Learning Conditional Preference Networks. Artificial Intelligence, 2010, 174( 11 ) : 685 -703.
  • 5Conitzer V. Making Decisions Based on the Preferences of Multiple Agents. Communications of the ACM, 2010, 53(3) : 84-94.
  • 6Lin Fangzhen, Tang Pingzhong. Computer-Aided Proofs of Arrow's and Other ImpossibiLity Theorems. Artificial Intelligence, 2009, 173(8/9) : 1041 - 1053.
  • 7Lang J. Logical Preference Representation and Combinatorial Vote. Annals of Mathematics and Artificial Intelligence, 2004, 42 ( 1/2/ 3) : 37 -71.
  • 8Conitzer V, Sandholm T, Lang J. When Are Elections with Few Candidates Hard to Manipulate. Journal of the ACM, 2007, 54 (3) : 1 -33.
  • 9Zuckerman M, Procaccia A D, Rosenschein J S. Algorithms for the Coalitional Manipulation Problem. Artificial Intelligence, 2009, 173($/9) : 392 -412.
  • 10刘惊雷,张伟,王玲玲.联盟结构图的代数性质及应用[J].模式识别与人工智能,2009,22(6):841-847. 被引量:7

二级参考文献22

  • 1刘惊雷,童向荣,张伟.一种快速构建最优联盟结构的方法[J].计算机工程与应用,2006,42(4):35-37. 被引量:10
  • 2张新良,石纯一.多Agent联盟结构动态生成算法[J].软件学报,2007,18(3):574-581. 被引量:25
  • 3苏射雄,胡山立,林超峰,郑盛福.基于局部最优的联盟结构生成算法[J].计算机研究与发展,2007,44(2):277-281. 被引量:16
  • 4Rahwan T, Jennings N R. An Improved Dynamic Programming Algorithm for Coalition Structure Generation// Proc of the 7th International Conference on Autonomous Agents and Multi-Agent Systems. Estoril, Portugal, 2008,Ⅲ: 1417-1420.
  • 5Rahwan T, Ramchurn S D, Dang V D, et al. Near-Optimal Anytime Coalition Structure Generation//Proc of the 20th International Joint Conference on Artificial Intelligence. Hyderabad, India, 2007 : 2365 -2371.
  • 6Rahwan T, Ramchurn S D, Giovannucci A, et al. Anytime Optimal Coalition Structure Generation // Proc of the 22nd Conference on Artificial Intelligence. Vancouver, Canada, 2007 : 1184 - 1190.
  • 7Dang V D, Jennings N R. Generating Coalition Structures with Finite Bound from the Optimal Guarantees//Proc of the 3rd International Joint Conference on Autonomous Agents and Multi-Agent Systems. New York, USA, 2004:564 -571.
  • 8Shehory O, Kraus S. Task Allocation via Coalition Formation among Autonomous Agents// Proc of the 14th International Joint Conference on Artificial Intelligence. Montreal, Canada, 1995 : 655 - 661.
  • 9Shehory O, Kraus S. Methods for Task Allocation via Agent Coalition Formation. Artificial Intelligence, 1998, 101 (1/2) : 165 - 200.
  • 10Sandholm W, Larson K, Andersson M, et al. Coalition Structure Generation with Worst Case Guarantees. Artificial Intelligence, 1998, 111 (1/2) : 209 - 238.

共引文献9

同被引文献35

  • 1Casali A, Godo L, Sierra C. A Graded BDI Agent Model to Repre- sent and Reason About Preferences. Artificial Intelligence, 2011,175(7/8) : 1468-1478.
  • 2Domshlak C, Hfillermeier E, Kaci S, et al. Preferences in AI: An Overview. Artificial Intelligence, 2011, 175 (7/8) : 1037-1052.
  • 3Levandoski J J, Eldawy A, Mokbel M F, et al. Flexible and Exten- sible Preference Evaluation in Database Systems. ACM Transactions on Database Systems, 2013. DOI: 10. 1145/2493268.
  • 4Boutilier C, Brafman R, Domshlak C, et al. CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Prefer- ence Statements. Journal of Artificial Intelligence Research, 2004, 21 ( 1 ) : 135-191.
  • 5Stefanidis K, Koutrika G, Pitoura E. A Survey on Representation, Composition and Application of Preferences in Database Systems. ACM Transactions on Database Systems, 2011. DOI: 10. 1145/ 2000824,2000829.
  • 6Alkhateeb F, Baget J F, Euzenat J. Extending SPARQL with Regu- lar Expression Patterns ( for Querying RDF). Web Semantics : Sci- ence, Services and Agents on the World Wide Web, 2009, 7 (2) : 57 -73.
  • 7Van Benthem J, Girard P, Roy O. Everything Else Being Equal: A Modal Logic for Ceteris Paribus Preferences. Journal of Philosophical Logic, 2009, 38(1): 83-125.
  • 8Angles R, Gutierrez C. Survey of Graph Database Computing Surveys, 2008. DOI: 10,1145/1322432. Models. ACM 1322433.
  • 9Atserias A, Dawar A, Kolaitis P G. On Preservation under Homo- morphisms and Unions of Conjunctive Queries. Journal of the ACM, 2006, 53(2) : 208-237.
  • 10Abiteboul S, Hull R,"Vianu V. Foundations of Databases. Boston, USA: Addison-Wesley, 1995.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部