期刊文献+

基于神经网络与灰色系统模型的巨项目风险预测 被引量:2

Risk Prediction of the Giant Project Based on Neural Network and Gray System Model
下载PDF
导出
摘要 巨项目概念的提出为工程项目风险管理的方法和技术提出了新的要求,传统的风险预测与管理方法在巨项目中产生了一定的局限性。文章用神经网络逼近非线性插入方法构建时间序中的风险预测,并建立风险时间序列的GM模型和时间响应函数预测巨项目的风险,最后通过实例计算预测结果的准确性,对巨项目的风险预测具有一定的参考价值。 Giant project has made new demands for the methods and technology of engineering project risk management,so the traditional risk prediction and management methods have certain limitation in the giant project.This paper uses neural networks to approximate nonlinear insert method to construct the risk prediction in time sequence,and establishes the GM model of risk in time series and time response function to predict the risk of the giant project,and finally calculates the accuracy of prediction results through practical example.This study has a certain reference value to the risk prediction of giant project.
作者 黄锐
出处 《价值工程》 2012年第3期289-290,共2页 Value Engineering
关键词 神经网络 灰色系统 巨项目 风险预测 neural network gray system giant project risk prediction
  • 相关文献

参考文献3

二级参考文献21

  • 1雷鸣,尹申明,杨叔子.神经网络自适应学习研究[J].系统工程与电子技术,1994,16(3):19-27. 被引量:30
  • 2Hagan M T ,Menhaj M B. Training feed forward networks with Marquart algorithm[J]. IEEE Trans on Neural Networks ,2001,5(6):989-993.
  • 3Kandel E R, Schwarts J. Principles of Neural Science[M]. chapter 1-2 Elsevier 1985,1-56.
  • 4Hema Rao, Alexey G.Ivakhnenko. Inductive Leaning Algorithms for Complex System modeling[M]. CRC Press, Inc, 1994. 56-78.
  • 5Farlow S J. Self-organizing Method in Moedling[M]. Marcel Dekker, New York, 1996.
  • 6Lippmann R P. An Introduction to Computing With Neural Nets[M]. IEEE ASSP Magazine, 1999, 23-45.
  • 7Cyberko G. Approximations by superpositions of a sigmoidal function[A]. Math Control Singnal System[C], 1989. 45-89.
  • 8Hecht-Nielsen R. Theory of back propagation neural network[J]. Proc of IJCNN, 1989, 1:593-603.
  • 9Edward gately. Neural Network for Financial Forecasting[M]. Wiley, 1996.
  • 10Eitan Michael Azoff. Reducing error in neural network time series forecasting[J]. Neural Computing and Applications, 1999:240-247.

共引文献75

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部