期刊文献+

基于可见光响应的纳米硒半导体器件

Se Nanobelt Semiconductor Devices Based on Visible Light Response
下载PDF
导出
摘要 不加入任何表面活性剂、利用溶解-重结晶原理合成了一维结构的Se纳米带,并用XRD,SEM及TEM等方法对产品进行了表征。以单根的硒纳米带为光电响应材料、以银浆为接触电极组装成纳米器件,并对光电响应特性以及光谱响应特性进行了测试。结果表明:在可见光(日光灯)照射下,其对开灯的最快响应时间约为30 ms,关灯时最快衰减时间为50 ms。该纳米器件的光电流对温度有依赖作用,低温下有利于光电流的产生;单色光的波长对纳米器件的光电流及响应时间的影响不同,在单色光谱响应范围内,纳米器件在650 nm处产生的光电流最大,而在350 nm处的响应时间最快。 Se nanobelts with one dimensional structure were synthesized by dissolution-recrystallization principle without any surfactants. The Se nanobelts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), etc. The nanodevice was assembled with a single Se nanobelt as photoelectric response materials and silver paste as contact electrodes. The photoelectric response characteristics and spectral response characteristic were tested. The results show that under the irradiation of the visible light (fluorescent lamp), the fastest respond time is about 30 ms for turning on the light and the fastest attenuation time is 50 ms for turning off the light. The temperature has much effect on the photocurrent of the nanobelt device, the low temperature is in favour of the generation for the photocurrent. The effects of the wavelength of the monochromatic light on the photocurrent and the response time were different. In the monochrome spectral response range, the nanodevice has the largest photocurrent at 650 nm and the fastest response time at 350 nm.
出处 《微纳电子技术》 CAS 北大核心 2012年第1期7-11,26,共6页 Micronanoelectronic Technology
基金 国家自然基金资助项目(21063005 50968005) 广西自然科学基金资助项目(2010GXNSFC013007 0640068) 教育部留学回国人员启动基金项目(教外司留[2009]1341号) 结构化学国家重点实验室科学基金资助项目(20100017) 广西教育厅专利资助项目(200911ZL47)
关键词 硒纳米带 光电响应 溶剂热合成 纳米器件 可见光 Se nanobelt photoelectron respond solvent hydrothermal synthesis nanodevice visible light
  • 相关文献

参考文献2

二级参考文献9

  • 1[1]Morkoc H. Nitride semiconductors and devices[M]. Springer: 1999.
  • 2[2]Morkoc H. GaN-based modulation doped FETs and UV detedtors[J]. Solid-State Electronics, 2002, 46: 157-202.
  • 3[3]Razeghi M. Semiconductor ultraviolet detectors[J]. J. Appl. Phys., 1996, 79(10): 7 433-7 473.
  • 4[4]Jacques I. GaN: from fundamentls to applications[J]. Materials Science and Engineering, 1999, B61-62: 305-309.
  • 5[5]Walker D. High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN[J]. Appl. Phys. Lett., 1999, 74: 762-764.
  • 6[6]Lin M E. Low resistance ohmic contacts on wide band-gap GaN[J]. Appl. Phys. Lett., 1994, 64(8): 1 003.
  • 7Carrano J C,Appl Phys Lett,1998年,72卷,542页
  • 8Zhang X,Appl Phys Lett,1995年,67卷,2028页
  • 9Khan M A,Electron Lett,1995年,31卷,398页

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部