期刊文献+

零膨胀负二项回归模型的推广与费率厘定 被引量:10

Generalization of zero-inflated negative binomial regression model and ratemaking
原文传递
导出
摘要 在费率厘定中,当索赔次数数据存在过离散(over-dispersion)特征时,通常会采用负二项回归模型,但当索赔数据中同时又出现零膨胀(zero-inflated)问题时,负二项回归模型不再适合对这样的数据进行分析.在传统的零膨胀负二项回归模型为基础,并将其推广到更为一般的形式,同时利用解决费率厘定中出现的既有过离散又有零膨胀的问题.通过对一组汽车损失数据的拟合,推广后的零膨胀负二项回归模型有效地改善了拟合效果. When the claim numbers appear to be over-dispersed in ratemaking, negative binomial regres- sion model will be usually applied. However, it is also possible that the claim numbers may be zero-inflated, and then the negative binomial regression is not suitable for those data. The paper makes generalization of zero-inflated negative binomial distribution based on traditional ones to deal with the over-dispersed and zero-inflated data simultaneously. At the end of set of automobile insurance loss and the result shows the paper, the extended model is applied to a data that the goodness-of-fit can be effectively improved.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2012年第1期127-133,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71171193)
关键词 负二项回归 零膨胀负二项回归 过离散 费率厘定 negative binomial regression zero-inflated negative binomial regression over-dispersed ratemaking
  • 相关文献

参考文献17

  • 1Lemaire J. Automobile Insurance: Actuarial Models[M]. 2nd ed. Boston: Kluwer, 1996.
  • 2Kass R, Goovaerts M, Dhaene J, et al. Modern Actuarial Risk Theory[M]. Boston: Kluwer, 2001.
  • 3Klugman S A, Panjer H H, Willmot G E. Loss Models: Form Data to Decisions[M]. 2nd ed. New York: John Willey & Sons Inc, 2004.
  • 4Denuit M, Marechal X, Pitrebois S, et al. Actuarial Modeling of Claim Counts: Risk Classification, Credibility and Bonus-Mallus Scales[M]. NewYork: Wilely, 2007.
  • 5Lambert D. Zero-inflated poisson regression with an application to defects in manufacturing[J]. Technometric, 1992, 34: 1-14.
  • 6Miaou S P. The relationship between truck accidents and geometric design of road section: Poisson versus negative binomial regression[J]. Accident Analysis and Preventation, 1994, 26: 471-482.
  • 7Lee A H, Stevenson M R, Wang K, et al. Modeling young driver motor vehicle crashes: Data with extra zeros[J]. Accident Analysis and Prevention, 2002, 34: 515-521.
  • 8Yip Karen C H, Yau Kelvin K W. On modeling claim frequency data in general insurance with extra zeros[J]. Insurance: Mathematics and Economics, 2005, 36: 153-163.
  • 9Jean-Philippe B, Michel D, Montserrat G. Risk classification for claim counts: A comparative analysis of various zero-inflated mixed poisson and hurdle models[J]. North American Actuarial Journal, 2007(11): 110-131.
  • 10韦金芬,董理.利用ZIP模型估计备品备件需求量[J].海军工程大学学报,2007,19(6):71-74. 被引量:6

二级参考文献52

共引文献67

同被引文献198

引证文献10

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部