期刊文献+

最小MPR集选取问题的改进蚁群优化算法 被引量:4

Minimum MPR Set Selection: an Improved Ant Colony Optimization Approach
下载PDF
导出
摘要 多点中继(MPR)是移动自组网中用来降低网络开销所采用的一种机制,但由于最小MPR集的选取属于NP完全问题,传统的贪心算法往往难以取得较好的结果.本文将蚁群优化用于最小MPR集选取问题的求解,给出了一种基于候选解的改进蚁群算法CSACO.通过使用候选解集进行信息素的更新,提高了算法的收敛速度,同时避免了算法陷入早熟.模拟实验表明,CSACO可以有效降低MPR集的大小,同时在较短的时间内收敛到最优解,提高网络性能. Multipoint Relay (MPR) is a mechanism to reduce the overhead in Mobile Ad hoe networks. However, the selection of MPR set with minimum size is NP-hard, and the original greedy algorithm doesnt work well in most cases. In this paper, we use the ant colony optimization (ACO) for the MPR set selection, then propose an improved ACO algorithm called CSACO based on the concept of candidate solution. By using candidate soludon set to update the pheromone, the speed of convergence is improved and the premature convergence is effectively avoided. Finally, the simulation results are presented to show that CSACO performs well in different scenarios: It significantly reduces the degree of the MPR set, and obtains the convergence in a shorter time.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第1期126-129,共4页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划项目(2009AA01Z203)资助 国家自然科(60970128 90818007)资助
关键词 多点中继 蚁群优化 候选解 最小MPR集 multipoint relay ant colony optimization candidate solution minimum MPR set
  • 相关文献

参考文献12

  • 1Parpinclli R S, Lopes H S, Freitas A A. Data mining with an ant colony optimization algorithm[ J]. IEEE Trans. Evol. Comput. , 2002,6 ( 4 ) : 321-332.
  • 2王兴伟,邹荣珠,黄敏.基于蚂蚁算法的ABC支持型QoS组播路由机制[J].东北大学学报(自然科学版),2009,30(7):959-963. 被引量:6
  • 3Zecohin A C, Simpson A R, Maier H R, et al. Parametric study for ant algorithm applied to water distribution system optimization [J]. IEEE Trans. Evol. Comput. ,2005,9(2):175-191.
  • 4Gambardella L M,Dorigo M. Ant-Q: a reinforcement learning approach to the traveling salesman problem[ C ]. Proc. ML-95, 12th Int. Conf. on Machine Learning, A. Pricditis and S. Russell ( exis. ) ( Morgan Kaufmann, San Francisco, CA), 1995:252-260.
  • 5Blum C,Dorigo M. The hyper-cube framework for ant colony optimization[J]. IEEE Trans. Systems, Man, and Cybernetics,Part B ,2004,34 : 1161 -1172.
  • 6Chizari H,Hosseini M,Abd Razak S. Multipoint relay selection using GA[ C]. IEEE Symposium on Industrial Electronics &Applications, 2009: 957 -962.
  • 7Dofigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem [ J ]. IEEE Trans. Evol. Comput. ,1997,1(1) :53-66.
  • 8Wagner A I, Linderbauni M, Bmckstein A M. ANTS : agents, networks, trees, and subgraphs [ J]. Future Generation Computer Systems Journal, Dorigo M, Di Caro G D, Stutzel T, Eds. Amsterdam, The Netherlands: North Holland,2000,16:915-926.
  • 9Colomi A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[ C]. Proceedings of the 1st European Conference on Artificial Life,Paris,France,1991:134-142.
  • 10Amir Qayyum A L, Laurent Viennot. Multipoint relaying: an efficient technique for flooding in mobile wireless networks[ R]. Instirut National De Reeherehe En Informatique Et En Automatique, Tech. Rep. ,2000.

二级参考文献11

共引文献28

同被引文献24

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部