期刊文献+

基于微正则算法和支持向量机的话务量预测 被引量:1

Algorithm of microcanonical—SVM based for forecasting traffic load
下载PDF
导出
摘要 根据话务量数据的特征,首次提出了一种基于微正则退火算法和支持向量机的预测模型。支持向量机参数的选择影响其预测的能力,微正则退火算法而是通过在状态空间中随机行走的虚拟妖来实现参数的优化选择。实际的话务量数据验证表明,其搜索成功率远高于模拟退火算法,目标函数值下降更快,能在短时间内搜索到最优解,且预测精度高。 Basing on the speciality of traffic load in the paper,a traffic load forecasting model based on microcanonical annealing—Support Vector Machines (SVM) is proposed.Appropriate parameters are very crucial to SVM forecasting ability,the optimal parameters selection is achieved by random walks of demons in the state space of Microcanonical Annealing (MA) algorithm.The verification on the model with real traffic data shows that,this algorithm will offer better results with higher probability to hit the global optimum than Simulated Annealing (SA) algorithm,objective function value is also decreased faster,and has high precision.
出处 《计算机工程与应用》 CSCD 2012年第3期105-106,110,共3页 Computer Engineering and Applications
基金 中国移动新疆分公司研究发展基金项目
关键词 话务量 微正则退火 支持向量机 预测模型 traffic load microcanonical annealing Support Vector Machine(SVM) forecasting model
  • 相关文献

参考文献9

  • 1Pai P F,Hong W C.Software reliability forecasting by support vector machines with simulated annealing algorithms[J].Syst Soflw, 2006,79 : 747-755.
  • 2Duque-Ant6n M,Kunz D,Riiber B.Channel assignment for cellu- lar radio using simulated annealing[J].IEEE Transactions on Vehicular Technology, 1993,42( l ) : 14-21.
  • 3Vapnik V N.The nature of statistical leaming theory[M].2rd.New York: Springer-Verlag, 1999.
  • 4Poggio T,Rifkin R,Mukherjee S, et al.General conditions for pre- dictivity in learning theory[J].Nahme(S0028-0836),2004,428(3): 419-422.
  • 5Xue Guixiang,Wang Xiaofang,Wei Li,et al.An improved micro- canonical mean field annealing algorithm[C]//2009 Second Inter- national Conference on Intelligent Networks and Intelligent Sys- tems, 2009: 543-545.
  • 6徐俊杰,忻展红.基于微正则退火的频率分配方法[J].北京邮电大学学报,2007,30(2):67-70. 被引量:22
  • 7Wang Jianxin, Xiao Xuefeng, Ye Jin.An analysis of traffic load prediction based on auto regressive model in small time granu- larity[C]//Proceedings Communications, Circuits and Systems, Chang- sha,2006:1727-1731.
  • 8Popov A,Sautin A.Selection of support vector machines parame- ters for regression using nested grids[C]//Strategic Technologies, Novosibirsk, 2008 : 329-331.
  • 9Wu C H Ho J M,Lee D T.Travel-time prediction with support vector regression[J].IEEE Trans on Intelligent Transportation Sys- tems, 2004,5(4) : 276-281.

二级参考文献12

  • 1许良凤.蜂窝移动通信中基于遗传退火的固定频率分配[J].安徽农业大学学报,2004,31(4):508-510. 被引量:5
  • 2Hale W K.Frequency assignment:theory and applications[J].Proceedings of IEEE,1980,68(12):1497-1514.
  • 3Duque-Antón M,Kunz D,Rüber B.Channel assignment for cellular radio using simulated annealing[J].IEEE Transactions on Vehicular Technology,1993,42(1):14-21.
  • 4Valenzuela C,Hurley S,Smith D H.A permutation based genetic algorithm for minimum span frequency assignment[C]∥LNCS 1498.Berlin:Springer-Verlag,1998:907-916.
  • 5Castelino D J,Hurley S,Stephens N M.A tabu search algorithm for frequency assignment[J].Annals of Operations Research,1996,63:301-319.
  • 6Kunz D.Channel assignment for cellular radio using neural networks[J].IEEE Transactions on Vehicular Technology,1991,40(1):188-193.
  • 7Maniezzo V,Carbonaro A.An ANTS heuristic for the frequency assignment problem[J].Future Generation Computer Systems,2000,16:927-935.
  • 8Aardal K I,Hoesel S P M V,Koster A M C A,et al.Models and solution techniques for frequency assignment problems[R].Berlin:Springer-Verlag,2001.
  • 9Roberts F S.T-colorings of graphs:recent results and open problems[J].Discrete Mathematics,1991,93(2):229-245.
  • 10Creutz M.Microcanonical monte carlo simulation[J].Physical Review Letters,1983,50(19):1411-1414.

共引文献21

同被引文献7

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部