期刊文献+

一种新的异常行为检测算法 被引量:11

New detection algorithm for abnormal behavior
下载PDF
导出
摘要 行人异常行为的自动检测与识别是计算机视觉领域的重点和难点,同时也是智能监控系统中研究的热点问题。针对这一问题,提出了一种基于人体形态特征的异常检测算法。利用轮廓信息将目标从视频序列中分割出来,再对分割出来的目标进行轮廓拟合,根据所得到的拟合信息提取文中所定义的形态特征因子,将特征因子经过行为分类器的判定,从而决策出该行为是否异常。实验结果表明该方法实现简单,具有较好的实时性与鲁棒性,可以作为实时监控系统中异常行为检测的有效方法。 Automatic recognition of human behavior is an important but difficult problem in the area of computer vision.In this paper,a novel approach is introduced to handle the problem.Human body is detected using the contour information and the posture features are extracted by the contour fitting.A behavior classifier based on the normal behavior template is established to determine whether a human behavior is normal or not.Experimental results show that this system can run in real-time for the detection of abnormal behaviors with limited information and produce robust results by making full use of posture features information.
出处 《计算机工程与应用》 CSCD 2012年第3期192-194,220,共4页 Computer Engineering and Applications
关键词 异常检测 形态特征 运动分割 视频监控 anomaly detection posture feature motion segmentation video surveillance
  • 相关文献

参考文献13

  • 1Niu F,Abdel-Mottaleb M.HMM-based segmentation and recogni- tion of human activities from video sequences[C]//IEEE Interna- tional Conference on Multimedia and Expo, 2005, ICME 2005, 2005.
  • 2Zhou Harming, Kimber D.Unusual event detection via multi-cam- era video mining[C]//18th International Conference on Pattern Recognition, 2006, ICPR 2006,2006.
  • 3Wu Xinyu,Ou Yongsheng, Qian Huihuan, et al.A detection system for human abnormal behavior[C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,2005 ,IROS 2005, 2005.
  • 4Chen Yufeng, Liang Guoyuan, Lee K K, et al.Abnormal behav- ior detection by multi-SVM-based Bayesian network[C]//Intema- tional Conference on Information Acquisition, 2007, ICIA' 07, 2007.
  • 5Abdi J,Nekoui M A,Deterrnined prediction of nonlinear time se- ries via emotional temporal difference learning[C]//Control and Decision Conference,2008,CCDC 2008,2008.
  • 6Ning Huazhong, Xu Wei, Zhou Yue, et al.Temporal difference learning to detect unsafe system states[C]//19th Intemational Con- ference on Pattern Recognition, ICPR, 2008.
  • 7Ahrnad M,Taslima T,Lata L,et al.A combined local-global opti- cal flow approach for cranial ultrasonogram image sequence analysis[C]//llth International Conference on Computer and Infor- mation Technology, 2008, ICCIT 2008,2008.
  • 8Chen C C,Aggarwal J K,An adaptive background model initial- ization algorithm with objects moving at different depths[C]//15th IEEE International Conference on Image Processing, 2008, ICIP 2008. 2008.
  • 9Stauffer C, Grimson W E L.Adaptive background mixture mod- els for real-time tracking[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999.
  • 10印勇,张毅,刘丹平.基于改进Hu矩的异常行为识别[J].计算机技术与发展,2009,19(9):90-92. 被引量:8

二级参考文献8

  • 1吕洪涛,周继成.离散状态下的不变矩算法研究[J].数据采集与处理,1993,8(2):151-155. 被引量:21
  • 2王陈阳,周明全,耿国华.基于自适应背景模型运动目标检测[J].计算机技术与发展,2007,17(4):21-23. 被引量:19
  • 3Li Y, Xu C J, Liu J Z. Detecting Irregularity in Video Using Kernel Estimation and K- D Trees[ C]//Proceedings of the 14th annual ACM international conference on Multimedia. New York:ACM press, 2006:639 - 642.
  • 4Zhou H,Kmber D. Unusual Event Detection Via Multi- camera Video Mining[C] #Proceedings of the 18th International Conference on Pattern Recognition- Volume 03. Washington, DC: IEEE Computer Society, 2006:1161 - 1166.
  • 5Zhang D, Daniel O P, Beng D S, et al. Semi - supervised Adapted HMMs for Unusual Event Detection[C]//Proceedings of the 2005 IEEE Computer Society Connference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005:611 - 618.
  • 6Wu X Y, Ou Y S, Qian H H, et al. A detection system for human Abnormal behavior[ C]//IEEE International Conference on Intelligent Robots and Systems. New York: IEEE Intelligent Robots and Systems, 2005 :1204 - 1208.
  • 7付玮,曾接贤.基于形状特征的图像检索技术研究[J].计算机技术与发展,2007,17(11):228-232. 被引量:16
  • 8丁明跃,常金玲,彭嘉雄.不变矩算法研究[J].数据采集与处理,1992,7(1):1-9. 被引量:63

共引文献7

同被引文献81

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部