期刊文献+

基于纹理分类的极化SAR图像滤波方法 被引量:3

Parameter Estimation Method for PolSAR Filtering Based on Texture Classification
下载PDF
导出
摘要 关于雷达图像优化,提高分辨率的问题,场景较为复杂的图像,固有噪声图像效果不够理想,对具有不同统计特性的像素点缺乏精确的区分。由于传统参数估计方法降噪效果不足,为解决上述问题,提出了一种基于纹理特征分类的参数估计方法。首先计算极化总功率图像的灰度共生矩阵,并提取纹理特征矢量,用K均值聚类的方法进行分类。然后根据分类结果,在滑动邻域窗内选取与中心像素同类别的像素用于参数估计。实验结果表明,改进的纹理分类的滤波方法具有更好的降噪效果,对于复杂场景的极化SAR图像表现了较大的优越性。 Polarimetric Whitening Filtering is a classical method for polarimetric SAR noise reduction, but the parameter estimation of the covariance matrix has always been a difficulty. The noise reduction effects of traditional methods, like the sliding neighborhood window, the Prewitt operator edge detection, and the structure inspection, are not good enough as they can not make a subtle distinction between the pixels with different statistical properties. To solve this problem, a new parameter estimation method based on texture classification has been proposed in this paper. Texture features were extracted from the span image, which then was used to calculate the gray-level co-occurrence matrix. Image pixels were then classified by K-mean clustering method. Parameters were calculated from the pixels of the same class in the sliding neighborhood window. Experiments demonstrate the effectiveness of this method. It shows much more advantage in polarimetric SAR images with complex scenes.
作者 刘蓉 娄晓光
出处 《计算机仿真》 CSCD 北大核心 2012年第1期242-245,共4页 Computer Simulation
关键词 纹理 相干斑 白化滤波 极化合成孔径雷达 Texture Speckle White filtering Polarimetric SAR
  • 相关文献

参考文献15

  • 1胡方方,张金成.基于线性规划的SAR图像相干斑抑制算法[J].计算机仿真,2010,27(11):251-253. 被引量:2
  • 2U Kandaswamy, D A Adjeroh, M C Lee. Efficient texture analysis of SAR imagery [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43 (9) :2075-2083.
  • 3D A Clausi, B Yue. Comparing co-occurrence probabilities and markov random fields for texture analysis of SAR sea ice imagery [ J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42( 1 ) :215-228.
  • 4D A Clausi. Comparison and fusion of co-occurrence, Gabor and MRF texture for classification of SAR sea ice imagery[ J]. Atmosphere Oceans,2001,39(4) :183-194.
  • 5C Lopez-Martinez, X Fabregas. Model-Based Polarimetric SAR Speckle Filter[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2008,46( 11 ) :3894-3907.
  • 6J S Lee, M R Grunes, G de Grandi. Polarimetric SAR speckle filtering and its implication for classification [ J ]. IEEE Transactions on Geoseienee and Remote Sensing, 1999,37 ( 5 ) : 2363 - 2373.
  • 7R J Dekker. Texture analysis and classification of ERS SAR images for map updating of urban areas in The Netherlands [ J ]. IEEE Transaction on Geoscience and Remote Sensing, 2003,41 (9) :1950-1958.
  • 8胡召玲,李海权,杜培军.SAR图像纹理特征提取与分类研究[J].中国矿业大学学报,2009,38(3):422-427. 被引量:40
  • 9闫肃,赵久奋,王顺宏.一种改进的相干斑噪声抑制算法[J].计算机仿真,2009,26(3):8-11. 被引量:4
  • 10孙楠,王岩飞,张冰尘.基于无监督分类的多视极化SAR相干斑滤波[J].电子与信息学报,2008,30(1):220-223. 被引量:7

二级参考文献50

共引文献250

同被引文献79

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部