期刊文献+

高光谱遥感影像降维的拉普拉斯特征映射方法

Laplacian Eigenmap for Hyperspectral Remote Sensing Image Dimensionality Reduction
下载PDF
导出
摘要 针对高光谱遥感影像数据量大、数据冗余度高的特点,引入拉普拉斯特征映射方法对高光谱遥感数据进行非线性降维。为了解决传统流形学习方法不能处理大数据量遥感影像的问题,本文提出了基于多元线性回归的拉普拉斯特征映射线性解法。实验证明,本文提出的降维方法能够保持数据集在原始特征空间分布的局部几何属性,降维后的影像具有更好的分类精度。 Feature extraction is an indispensable preprocessing step for large and high redundancy data of hyperspectral remote sensing image.In this paper,a Laplacian Eigenmap(LE)is introduced for dimensionality reduction.In order to overcome the shortcoming of conventional manifold learning which could not deal with large data,a linearization procedure for LE is proposed based on multiple linear regression analysis.The experiment demonstrates that the proposed dimensionality reduction method can preserve local geometry of samples in original feature space,the low dimensionality image could achieve a better classification accuracy.
作者 黄蕾
出处 《遥感信息》 CSCD 2011年第6期37-41,共5页 Remote Sensing Information
关键词 高光谱 拉普拉斯特征映射 降维 分类 hyperspectral laplacian eigenmap dimensionality reduction classification
  • 相关文献

参考文献12

  • 1T.C.Bau,S.Sarkar,G.Healey.Hyperspectral region classification using a three-dimensional gabor filterbank[J] .IEEE Transactions on Geoscience and Remote Sensing,2010,48(9):3457-3464.
  • 2N.Acito,M.Diani,and G.Corsini.Hyperspectral signal subspace identification in the presence of rare signal components[J] .IEEE Transactions on Geoscience and Remote Sensing,2010,48(4):1940-1954.
  • 3J.M.Yang,B.C.Kuo,P.T.Yu,et al..A dynamic subspace method for hyperspectral image classification[J] .IEEE Transactions on Geoscience and Remote Sensing,2010,48(7):2840-2853.
  • 4G.Hughes.On the mean accuracy of statistical pattern recognizers[J] .IEEE Transactions on Information Theory,1968,14(1):55-63.
  • 5M.Zortea,V.Haertel,R.Clarke.Feature extraction in remote sensing high-dimensional image data[J] .IEEE Geoscience and Remote Sensing Letters,2007,4 (1):107-111.
  • 6T.Zhang,D.Tao,X.Li,et al..Patch alignment for dimensionality reduction[J] .IEEE Transactions on Knowledge and Data Engineering,2008:1299-1313.
  • 7S.Roweis,L.Saul.Nonlinear dimensionality reduction by locally linear embedding[J] .Science,2000,290(5500):2323.
  • 8L.Van der Maaten,E.Postma,H.Van den Herik.Dimensionality reduction:A comparative review[J] .Published Online,2007(10):1-41.
  • 9D.Cai,X.He,J.Han.SRDA:An efficient algorithm for large-scale discriminant analysis[J] .IEEE Transactions on Knowledge and Data Engineering,2008:1-12.
  • 10M.Belkin,P.Niyogi.Semi-supervised learning on Riemannian manifolds[J] .Machine Learning,2004,56(1):209-239.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部