期刊文献+

祁连山冻土区天然气水合物气体组分的气相色谱法测定 被引量:6

Gas chromatographic method for determination of gas composition from decomposed gas hydrate samples in Qilian Mountain permafrost
下载PDF
导出
摘要 建立了气相色谱法测定祁连山冻土区天然气水合物C1-C5气体纽分的分析方法,对比研究了单点法与多点法校正、外标法与外标归一化法定量。以及顶空法与排水法2种气体收集方式的区别。结果表明:顶空法制备、单点法校正、外标归一化法定量计算为气相色谱法测定天然气水合物气体组分的最佳方法。方法相对标准偏差(ILSD)为0-1.06%,检出限为0.0003%-0.0127%。通过对祁连山冻土区DK一2孔10个天然气水合物样品的测定,发现C,含量为60.64%-78.76%,C:含量为8.99%-13.60%,C3含量为6.58%-21.24%,C4和C5含量较少,可见c,气体组分含量丰富,具有较低的C1/C2+比值(1.5-3.7),显示出明显的热解气特征。关键词:祁连山冻土区;天然气水合物:气体组成; In tbis paper, gas chromatographic method for determination of C1-C5 gas composition from decomposed gas hydrate sam- ples in Qilian Mountain permafrost was established, and the difference between single- and multi-point correction method, external standard and external standard normalization quantitative method, drainage and head space gas collection method was comparatively studied. The results indicate that the head space collection method, single correction method, and external standard normalization quantitative method are the best means for quantitatively measuring gas composition from the decomposed gas hydrate sample, with the relative standard deviations in the range of 0.10%-0.47%, and detection limits varying from 0.0003% to 0.0127%. Based on the deter- mination of C1-C5 from ten decomposed gas hydrate samples of bohehole DK-2 in Qilian Mountain permafrost, it is found that the content of C1 ranges from 60.64% to 78.76%, C2 from 8.99% to 13.60%, and C3 from 6.58% to 21.24%, with C4-C5 being less abun- dant. Gas hydrate in Qilian Mountain permafrost is enriched with C2+ and has low C1/C~+ ratios(ranging from 1.5 to 3.7), showing the characteristics of thermogenic gases obviously.
出处 《地质通报》 CAS CSCD 北大核心 2011年第12期1857-1862,共6页 Geological Bulletin of China
基金 中国地质调查局项目《青藏高原冻土带天然气水合物调查评价》(编号:1212010818055) 国家自然科学基金项目《祁连山冻土区天然气水合物的结构特征及其控制因素》(编号:41072037)
关键词 祁连山冻土区 天然气水合物 气体组成 气相色谱法 Qilian Mountain permafrost natural gas hydrate gas composition gas chromatography
  • 相关文献

参考文献10

  • 1祝有海,张永勤,文怀军,卢振权,贾志耀,李永红,李清海,刘昌岭,王平康,郭星旺.青海祁连山冻土区发现天然气水合物[J].地质学报,2009,83(11):1762-1771. 被引量:227
  • 2徐文新,陈多福,陈先沛,等.天然气组成对水合物形成的影响及灾害预防研究[C]//2001年全国沉积学大会摘要论文集.武汉:中国地质大学(武汉)出版社,2001.
  • 3Milkov A V. Molecular and stable isotope compositions of natural gas hydrates: A revised global dataset and basic interpretations in the con text of geological settings[J],Organic Geochernistry,2005, 36( 5): 681-702.
  • 4Heeschen K U, Hohnberg H J, Haeckel M, et al.In situ hydrocarbon concentrations from pressurized cores in surface sediments, Northern Gulf of Mexico[J].Marine Chemistry, 2007,107(4) :498-515.
  • 5Milkov A V, Claypool G E, Lee Y J, et al. Gas hydrate systems at Hydrate Ridge offshore Oregon inferred from molecular and isotopic properties of hydrate-bound and void gases[J]. Geochimica et Cos mochimica Acta,2005,69(4):1007-1026.
  • 6Liu C L, Lu H L, Ye Y G, et al. Raman spectroscopic observations on the structural characteristics and dissociation behavior of methane hydrate synthesized in silica sands with various sizes[J]. Energy & Fu els, 2008, 22: 3986-3988.
  • 7Pimrnel A,Claypool G. Introduction to shipboard organic geochem istry on the JOIDES Resolution. ODP Technical Note 30[EB/OL]. (2001-08-21)[2011-09-10]. http://www -odp.tamu.edu/publica tions/tnotes/tn30/INDEX.HTM.
  • 8Trehu A M, Bohrmann G, Rack F R, et al. Proc. ODP, Initial Re ports 204 [EB/OL].(2003-11-12)[2011-09-10]. http://www-odp. tamu.edu/pubhcations/204 IR/204ir.htm.
  • 9唐蒙,迟永杰.天然气组成常规分析方法及其标准化[J].石油与天然气化工,2002,31(C00):64-70. 被引量:17
  • 10Milkov A V, Claypool G E, Lee Y J, et al. Ethane enrichment and propane depletion in subsurface gases indicate gas hydrate occurrence in marine sediments at southern Hydrate Ridge offshore Oregon[J]. Organic Geochemistry, 2004, 35: 1067-1080.

二级参考文献27

  • 1刘怀山,韩晓丽.西藏羌塘盆地天然气水合物地球物理特征识别与预测[J].西北地质,2004,37(4):33-38. 被引量:43
  • 2祝有海,刘亚玲,张永勤.祁连山多年冻土区天然气水合物的形成条件[J].地质通报,2006,25(1):58-63. 被引量:79
  • 3文怀军,鲁静,尚潞君,刘天绩,陈江峰,鞠崎,邵龙义.青海聚乎更矿区侏罗纪含煤岩系层序地层研究[J].中国煤田地质,2006,18(5):19-21. 被引量:65
  • 4库新勃,吴青柏,蒋观利.青藏高原多年冻土区天然气水合物可能分布范围研究[J].天然气地球科学,2007,18(4):588-592. 被引量:38
  • 5Collett T S. 1993. Permafrost-associated gas hydrate accumulations. In Sloan E D, Happer J, Hnatow M ed. International Conference on Natural Gas Hydrates. Annals ol the New York Academy of Science, 715: 2474269.
  • 6Collett T S, Dallimore S R. 2000. Permafrost-related natural gas hydrate. In Max M D ed. Natural Gas Hydrate in Oceanic and Permafrost Environments. The Netherlands: Kluwer Academic Publishers, 43-60.
  • 7Dallimore S R, Collett T S. 1999. Regional gas hydrate occurrences, permafrost conditions, and Cenozoic geology, Mackenzie Delta area. In Dallimore S R, Uchida T, Collett T S ed. Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada, Bulletin, 544:31-43.
  • 8Dallimore S R, Collett T S. Summary and implication of the Mallik 2002 gas hydrate production research well program. In Dallimore S R and Collett T S ed. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada, Bulletin, 2005, 585: 1-36.
  • 9Kvenvolden K A. 1988. Methane bydrate-a major reservoir of carbon in the shallow geosphere? Chemical Geology, 71:41-51.
  • 10Makogon Y F, Holditch S A, Makogon T Y. 2007. Natural gashydrates-A potential energy source for the 21st Century. Journal of Petroleum Science and Engineering, 56:14-31.

共引文献242

同被引文献119

引证文献6

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部