期刊文献+

随机耗散Camassa-Holm方程的吸引子 被引量:1

Random Attractor for Stochastic Camassa-Holm Equation with Dissipative Part
原文传递
导出
摘要 可以按轨道得到带白噪声的随机耗散Camassa-Holm方程的唯—解并且可以检验该解产生随机动力系统,从而证明了该随机动力系统在H0^2中存在紧的随机吸引子. It is showed that the stochastic be solved path-wise and the unique solution Camassa-Holm equation with white noise can generates a random dynamical system. Then a compact random attractor is obtained for this system in H0^2 space by a priori estimate technique.
出处 《应用数学学报》 CSCD 北大核心 2012年第1期73-87,共15页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11071199 10871217)资助项目
关键词 CAMASSA-HOLM方程 随机动力系统 随机吸引子 WIENER过程 Camassa-Holm equation random dynamical systems random attractor Wiener process
  • 相关文献

参考文献3

二级参考文献22

  • 1GUO BOLING(Center for Nonlineajr Studies,Institute of Applied Physics and Computational Mathematics, Beijing100088, China.).NONLINEAR GALERKIN METHODS FOR SOLVING TWO DIMENSIONAL NEWTON-BOUSSINESQ EQUATIONS[J].Chinese Annals of Mathematics,Series B,1995,16(3):379-390. 被引量:8
  • 2Wei Nian ZHANG(Weinian Zhang).Dimension of Maximal Attractors for the m-dimensional Cahn Hilliard System[J].Acta Mathematica Sinica,English Series,2005,21(6):1487-1494. 被引量:2
  • 3Constantin A, Escher J. Global Existence and Blow-up for a Shallow Water Equation. Ann. Scuola Norm, SUP. Pisacl. Sci., 1998, XXVI(4): 303-328
  • 4Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, Vol.68, Berlin: Springer-Verlag, 1988
  • 5Danchin R. A Few Remarks on the Camassa-Holm Equation. Differential and Integral Equation,2001, 14(8): 953-988
  • 6Camassa R, Holm D. An Integrable Shallow Water Equation with Peaked Solitons. Phys. Rev. Lett.,1993, 71(11): 1661-1664
  • 7Vukadinovic J. On the Backwards Behavior of the Solutions of the 2D Periodic Viscous Camassa-Holm Equation. Journal of Dynamics and Differential Equations, 2002, 14(1): 37-62
  • 8Fois C, Holm D, Titi S. The Three Dimensional Viscous Camassa-Holm Equations, and Their Relation to the Navier-Stokes Equations and Turbulence Theory. Journal of Dynamics and Differential Equations, 2002, 14(1): 1-35
  • 9郭柏灵,无穷维动力系统(上).北京:国防工业出版社,2000(Guo Boling. Infinite Dimensional Dynamiocal Systems. Beijing: Defense industry Press, 2000
  • 10Adams R A. Sobolev Spaces. In Pure and Applied Mathematics. New York: Academic Press, 1975. 65.

共引文献24

同被引文献5

  • 1丁丹平,田立新.耗散Camassa-Holm方程的吸引子[J].应用数学学报,2004,27(3):536-545. 被引量:13
  • 2LI Y R, GU A H, LI J. Existence and Continuity of Bi-Spatial Random Attractors and Application to Stochastic Semilin- ear Laplacian Equations [J]. J Differential Equations, 2015, 258: 504-534.
  • 3GUO B L, WANG B X. Upper Semicontinuity of Attracors for the Reaction Diffusion Equation [J]. Communication in Nonlinear Science & Numerical Simulation, 1996, 1(2): 38-41.
  • 4LI Y R, CUI H Y, LI J. Upper Semi-Continuity and Regularity of Random Attractors on p-Times Integrable Spaces and Applications [J]. Nonlinear Analysis, 2014, 109: 33-44.
  • 5赵文强.带加法白噪声的随机三维Camassa-Holm模型的H^2-吸引子[J].数学学报(中文版),2014,57(4):795-810. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部