期刊文献+

利用Lie群方法求Burgers-Huxley方程行波类首次积分 被引量:1

To Solve the First Integral of the Burgers-Huxley Travelling Wave Solution Equations by the Method of Lie Groups
原文传递
导出
摘要 本文运用Lie群理论,证明了Burgers-Huxley方程的行波解所满足的二阶非线性方程在参数满足一定关系时,在经典意义下接受一个两参数Lie群,此时可用积分法求其首次积分. When the parameters satisfy certain relations,that the second order nonlinear autonomous system which the travelling wave solution of the Burgers-Huxley equations satisfied admits two-parameter Lie group in classical sense is proved in the paper by the theory of Lie groups. The first integral of the system is solved by the method of integration.
出处 《应用数学学报》 CSCD 北大核心 2012年第1期130-137,共8页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10571169 10731010) 国家重点基础研究发展计划(2007CB814902) 湖北省高等学校优秀中青年科技创新团队项目经费(03BA85)资助项目
关键词 Burgers—Huxley方程 单参数Lie群 首次积分 Burgers-Huxley equation one-parameter Lie group first integral
  • 相关文献

参考文献3

二级参考文献8

  • 1HU Yanxia & GUAn Keying Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, China.Techniques for searching first integrals by Lie group and application to gyroscope system[J].Science China Mathematics,2005,48(8):1135-1143. 被引量:7
  • 2[1]WANG Ming-liang.The solitary wave solutions for variant Boussinesq equation[J].J.Physics Letters A,1995,199:169-172.
  • 3[2]FENG Zhao-sheng.On explicit exact solutions to the compound Burgers-KdV equation[J].J.Physics Letters A,2002,293:57-66.
  • 4[3]FENG Zhao-sheng.Exact solution to an approximate Sine-Gordon eqution in (n+1)-dimensional space[J].J.Physics Letters A,2002,302:64-76.
  • 5[4]FENG Zhao-sheng,WANG Xiao-hui.The first integral method to the two-dimensional space[J].J.Physics Letters A,2002,308:173-178.
  • 6[5]Estevez P G,Gordoa P R.Painleve analysis of the generalized Burgers-Huxley equation[J].J.Physics Letters A,1990,23(4):831-4 837.
  • 7[6]Estevez P G.Non-classical symmetries and the singular manifold method:the Burgers and Burgers-Huxley equations[J].J.Physics Letters A,1994,27:2 113-2 127.
  • 8[7]FAN En-gui.Traveling wave solutions for nonlinear equations using symbolic computation[J].Computers and Mathematics with Applications,2002,43(6-7):671-680.

共引文献13

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部