期刊文献+

基于GASS-BPEE交叉训练算法的河道冰情预报组合模型

Combination model of river ice regime forecast based on GASS-BPEE cross-training algorithm
下载PDF
导出
摘要 在文章的河道冰情预报的组合模型中,首先在成因分析的基础上,采用逐步回归算法对预报因子进行有效的筛选,然后采用GASS-BPEE交叉训练算法对冰情要素进行预报。利用该组合模型对凌汛灾害多发的松花江依兰、佳木斯江段开河日期进行了预报,结果表明所建立的河道冰情预报组合模型结构简单、预报精度较高,具有实用价值。 For the combination model of river ice regime forecast,the forecast factors are effective selected firstly by using the stepwise regression algorithm based on the basis of the cause analysis,then the factors of the ice regime are forecasted by using the GASS-BPEE cross-training algorithm.The combination model is used to forecast the break-up time of the Yilan and Jiamusi section of the Songhua River,with more ice flood disaster,the results show that the model has the advantages of the simple structure and high forecasting accuracy,and has practical value.
出处 《东北水利水电》 2012年第1期40-44,72,共5页 Water Resources & Hydropower of Northeast China
关键词 冰情预报 GASS—BPEE算法 交叉训练 开河日期 ice regime forecast GASS-BPEE algorithm cross-training break-up time
  • 相关文献

参考文献4

二级参考文献34

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部